6.5 Exercises - Part 3

(published on November 10, solutions to be submitted on November 24, 2016).
Exercise 9. (a) Let $M=N_{1} \oplus N_{2}$ be a module and let P_{1} and P_{2} be projective covers of N_{1} and N_{2}, respectively. Show that $P_{1} \oplus P_{2}$ is a projective cover of M.
(b) Let M be a module of finite length with $M / \operatorname{Rad}(M)=S_{1} \oplus \ldots S_{r}$. Show that there exists a superfluous epimorphism $P\left(S_{1}\right) \oplus \cdots \oplus P\left(S_{r}\right) \rightarrow M$ and conclude that $P(M)=P(M / \operatorname{Rad}(M))=P\left(S_{1}\right) \oplus \cdots \oplus P\left(S_{r}\right)$.
(Hint: $\operatorname{Rad}(M)$ is superfluous in M, so...)
(c) Prove that the injective envelope $E(S)$ of any simple module S is indecomposable.
(d) Show that any indecomposable injective module E is the injective envelope of its socle. Deduce that $\operatorname{Soc} E$ is a simple module.

Exercise 10. (a) Let M be an indecomposable left R-module of finite length, and let $f \in \operatorname{End}_{R}(M)$. Show that the following statements are equivalent.
(i) f is a monomorphism,
(ii) f is an epimorphism,
(iii) f is an isomorphism,
(iv) f is not nilpotent.

In particular, if f is not invertible, then $g f$ is not invertible for any $g \in \operatorname{End}_{R}(M)$.
(b) Prove Schur's Lemma: If S is a simple module, then $\operatorname{End}_{R} S$ is a skew field. Is the converse true?

Exercise 11. Let $p \in \mathbb{N}$ a prime and $M=\left\{\left.\frac{a}{p^{n}} \in \mathbb{Q} \right\rvert\, a \in \mathbb{Z}, n \in \mathbb{N}\right\}$.
(a) Verify that $\mathbb{Z} \leq M \leq \mathbb{Q}$ in \mathbb{Z} Mod.
(b) Let $\mathbb{Z}_{p^{\infty}}=M / \mathbb{Z}$. Show that $\mathbb{Z}_{p^{\infty}}$ is a divisible group.
(c) show that any $L \leq \mathbb{Z}_{p^{\infty}}$ is cyclic, generated by an element $\frac{1}{p^{t}}, l \in \mathbb{N}$.

Conclude the the lattice of the subgroups of $\mathbb{Z}_{p^{\infty}}$ is a well-ordered chain, and $\mathbb{Z}_{p \infty}$ does not have any maximal subgroup.

Exercise 12. (a) Let $F: \mathcal{B} \longrightarrow \mathcal{C}$ be a functor and let B and B^{\prime} be two objects in \mathcal{B}. Show that:

- if B and B^{\prime} are isomorphic in \mathcal{B}, then the objects $F(B)$ and $F\left(B^{\prime}\right)$ are isomorphic in \mathcal{C}; - if F is full and faithful, then the converse is also true.
(b) Let R and S be two rings and let $G: \operatorname{Mod}(R) \longrightarrow \operatorname{Mod}(S)$ be an equivalence of categories. Show that G is an exact functor.

