Si studia la funzione $f(x) = \frac{\ln x + 1}{x} x - 1 = \frac{\ln x + 1}{x}$.

Domini:
- $\text{dom}\ f = \{x \in \mathbb{R} : x > 0\}$

Segno:
- $\frac{\ln x + 1}{x} > 0$ se $\ln x + 1 > 0$ e $x > 0$
- $\frac{\ln x + 1}{x} < 0$ se $\ln x + 1 < 0$ e $x > 0$

Intersezioni con gli assi:
- $(x, 0)$; intersezione con l'asse y

$f \in C^\infty (A)$:
- $f'(x) = \left(\frac{\ln x + 1}{x}\right)' = \frac{1 - \ln x}{x^2}$
- $f'(x) > 0$ se $1 - \ln x > 0$ e $0 < x < e$
- $f'(x) < 0$ se $1 - \ln x < 0$ e $0 < x < e$

$f''(x) = \frac{\ln x + 1}{x^3}$
- $f''(x) > 0$ se $2 \ln x - 3 > 0$ e $x > e^{3/2}$
- $f''(x) < 0$ se $2 \ln x - 3 < 0$ e $0 < x < e^{3/2}$

Asintoti:
- Orizzontale: $y = \frac{-\ln e + 1}{e} + 1$ (max locale)
- Asintoto orizzontale: $y = -\frac{1}{x}$

Limiti:
- $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$

Spazio grafico:
- Il grafico della funzione è mostrato nell'immagine.