BINARY DECISION DIAGRAMS

© Giovanni De Micheli

Stanford University

Outline

C GDM

- Binary Decision Diagrams
- Operations with BDDs.
- Optimization of the BDD size:
 - Variable reordering.
- Other types of Decision Diagrams.

Binary Decision Diagrams

- Efficient representation of logic functions.
 - Proposed by Lee and Akers.
 - Popularized by Bryant (canonical form).
- Used for Boolean manipulation.
- Applicable to other domains:
 - Set and relation representation.
 - Simulation, finite-system analysis, ...

Definitions

– © GDM

- Binary decision diagram (BDD).
 - Tree or rooted dag with a decision at each vertex.
- Ordered binary decision diagram (OBDD).
 - Each decision is the evaluation of a Boolean variable.
 - The tree (or dag) can be levelized, so that each level corresponds to a variable.

Definition of OBDD

C GDM

- Rooted directed acyclic graph.
- Each non-leaf vertex (v) has:
 - A pointer index(v) to a variable.
 - Two children low(v) and high(v).
- Each leaf vertex (v) has a value (1 or 0).
- Ordering:
 - index(v) < index(low(v)).
 - index(v) < index(high(v)).

Properties

— © GDM

- Each OBDD with root v defines a function f^v:
 - If v is a leaf with value(v) = 1, then $f^v = 1$.
 - If v is a leaf with value(v) = 0, then $f^v = 0$.
 - If v is not a leaf and index(v) = i, then $f^v = x'_i \cdot f^{low(v)} + x_i \cdot f^{high(v)}$.
- A function may have different OBDDs.
- The size of the OBDD depends on the variable order.

ROBDDs

- Reduced ordered binary decision diagrams.
- No redundancies:
 - No vertex with low(v) = high(v).
 - No pair $\{u, v\}$ with isomorphic subgraphs rooted in u and v.
- Reduction can be achieved in polynomial time.
- ROBDDs can be such by construction.
- ROBDDs are *canonical forms*.

Features

- Canonical form allows us to:
 - Verify logic equivalence in constant time.
 - Check for tautology and perform logic operations in time proportional to the graph size. (Vertex cardinality).
- Drawback:
 - Size depends on variable order.

ROBDD size bounds

© GDM

• Multiplier:

- Exponential size.

- Adders:
 - Exponential to linear size.
- Sparse logic:

- Good heuristics to keep size small.

Tabular representations of ROBDDs

- Represent multi-rooted graphs.
 - Multiple-output functions.
 - Multiple-level logic forms.
- Unique table:
 - One row per vertex.
 - * Identifier.
 - * Key: (variable, left child, right child).

Identifier	Key		
	Variable	Left child	Right child
6	d	1	4
5	а	4	3
4	b	1	3
3	С	1	2

The *ite* operator

© GDM

- Apply operators to ROBDDs.
- Three Boolean functions: f, g, hwith top variable x.
- ite(f, g, h)
 - if (f) then (g) else (h)
 - -fg+f'h.
- Property:

- $ite(f, g, h) = ite(x, ite(f_x, g_x, h_x), ite(f_{x'}, g_{x'}, h_{x'}))$

Example

© GDM

• Apply and to two ROBDDs: f, g.

-fg = ite(f,g,0)

• Apply or to two ROBDDs: f, g.

-f + g = ite(f, 1, g)

• Similar for other Boolean operators.

Boolean operators

C GDM

Operator	Equivalent <i>ite</i> form	
0	0	
$f \cdot g$	ite(f,g,O)	
$f \cdot g'$	ite(f,g',0)	
$\int f$	f	
f'g	ite(f, 0, g)	
g	g	
$f\oplus g$	ite(f,g',g)	
f + g	ite(f, 1, g)	
(f+g)'	ite(f, 0, g')	
$f \oplus g$	ite(f,g,g')	
g'	ite(g, 0, 1)	
f + g'	ite(f, 1 , g')	
f'	ite(f, 0, 1)	
$f' + g_{i}$	ite(f, g, 1)	
$(f \cdot g)'$	ite(f,g', 1)	
1	1	

The *ITE* algorithm

- Evaluate the ite(f, g, h) operator recursively.
- Keeps OBDDs in reduced form.
- Use two tables (per function):
 - Unique table: represents ROBDD.
 - Computed table: stores previous info.
- Smart implementations of *ITE* have linear time complexity in the product of the ROBDD sizes.

The *ITE* algorithm

```
ITE(f, g, h){
     if (terminal case)
          return (r = trivial result);
     else {
          if (computed table has entry \{(f, g, h), r\})
               return (r from computed table);
          else {
               x = \text{top variable of } f, g, h;
               t = ITE(f_x, g_x, h_x);
               e = ITE(f_{x'}, g_{x'}, h_{x'});
               if (t == e)
                    return (t);
               r = find_or_add_unique_table(x, t, e);
               Update computed table with \{(f, g, h), r\};
               return (r);
         }
    }
}
```

Quantification with BDDs Consensus and smoothing

- © GDM

- Quantification can be computed by ITE.
- Specialized algorithm is more efficient.
 - Structure similar to ITE.
 - Arguments:
 - * Function f.
 - * Variables in *varlist*.
 - Function OP(t, e) returns:
 - * Consensus: AND(t, e) = ITE(t, e, 0).
 - * Smoothing: OR(t, e) = ITE(t, 1, e).

© GDM

```
QUANTIFY(f, varlist){
     if (f is constant)
          return (f);
     else {
          if (comp. table has entry \{(f, varlist), r\})
               return (r from computed table);
          else {
               x = \text{top variable of } f;
               g = f_x;
               h = f_{r'};
               t = QUANTIFY(q, varlist);
               e = QUANTIFY(h, varlist);
               if (x \text{ is in } varlist)
                   r = OP(t, e);
               else
                    r = ITE(x, t, e);
               Update comp. table \{(f, varlist), r\};
               return (r);
          }
     }
```

}

© GDM

- Function f = ab + bc + ac
- Consensus: $C_a(f)$.
- varlist = a
- QUANTIFY(f, a) with top variable a.
 - Cofactors: $g = f_a = b + c$ and $h = f_{a'} = bc$.
 - Recursion: t = g = b + c and e = h = bc.
 - * (g and h do not depend on a.)

$$-r = OP(t, e) = ITE(t, e, 0) = bc.$$

• $\mathcal{C}_a(f) = bc.$

Extensions to BDDs

🗕 © GDM

- Complemented edges
 - Reduce the size of ROBDDs.
 - Complement functions in constant time.
 - Restrictions on where the complemented edges can be placed to preserve canonicity.
 - * Edge $\{v, high(v)\}$ not complemented.
- *Don't care leaf* to represent incompletely specified functions.

Advantages of ROBDDs

© GDM

• Several algorithms for ROBDD manipulation.

– Polynomial time.

- Most often the ROBDDS have small size.
- Software packages available.
 - Caches.
 - Garbage collection.

Variable ordering for ROBDDs

____ © GDM __

- The variable order afffets the ROBDD size.
- Problem:
 - Given a function f, find the variable order that minimizes the size.
- The optimum ordering problem is intractable.
- Exact algorithm with complexity $O(n^2 \cdot 3^n)$.

Heuristic static variable ordering

- Given a multilevel circuit.
- Order the variables according to circuit structure.
- Rationale:
 - Variables that affect logic gates close to outputs should be at the bottom, because they affect only part of the function.
- Method:
 - Levelize variables by counting distance to output.

Dynamic variable reordering

C GDM

- BDD sizes vary with variable ordering.
 - While manipulating logic functions, a chosen order may no longer be good.
- Software packages do variable reordering.
 - Principle: perform iterative swapping of adjacent variables.
 - Constraint: modify tables as little as possible.

• $(x_i, F_1, F_0) = (x_{i+1}, (x_i, F_{11}, F_{01}), (x_i, F_{10}, F_{00}))$

Adjacent variable swapping

© GDM —

- The layers above and below the variables being swapped do not change.
- Two nodes are introduced
 - (May be present in unique table).
- Sifting algorithm.
 - Process one variable at a time.
 - Move variable to other positions in the order.
 - Repeat for all variables.

Other types of Decision Diagrams

- © GDM -

- Decision diagrams based on other expansions:
 - OFDD Ordered Functional Decision Diagrams
 - Based on Reed-Muller expansion:

* $f = f_{x'} \oplus x(f_{x'} \oplus f_x)$

- Decision diagrams for discrete functions.
 - Binary inputs, outputs in finite set.
 - Examples:
 - * ADD Algebraic Decision Diagrams.
 - * BMD Binary Moment Diagrams.
- Different types of reduction rules.

Algebraic Decision Diagrams (ADDs)

© GDM

- Multi-terminal ROBDDs.
- Finite number of leaves with different values.
- Good to represent discrete functions.

• Example:

Zero-suppressed BDDs (ZBDDs)

C GDM

- BDDs with different reduction rules:
 - Eliminate all nodes whose 1-edge points to the 0-leaf and redirect incoming edges to the 0-subgraph.
 - Share all equivalent subgraphs.
 - Good for representatiing ensembles of subsets.
- Rationale:
 - Most ensembles of subsets are *sparse*, i.e., subsets have few elements.

Summary

- Binary Decision Diagrams:
 - Used mainly in multi-level logic optimization.
 - Very efficient data-structure.
- Several flavors of decision diagrams address various needs.
- Efficient Boolean manipulation exploits cofactor expansion and recursion.