
I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Why study logic design?

 Obvious reasons
 this course is part of the CS/CompE requirements
 it is the implementation basis for all modern computing devices

 building large things from small components
 provide a model of how a computer works

 More important reasons
 the inherent parallelism in hardware is often our first exposure to 

parallel computation
 it offers an interesting counterpoint to software design and is 

therefore 
useful in furthering our understanding of computation, in general



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 2

What will we learn in this class?

 The language of logic design
 Boolean algebra, logic minimization, state, timing, CAD tools

 The concept of state in digital systems
 analogous to variables and program counters in software systems

 How to specify/simulate/compile/realize our designs
 hardware description languages
 tools to simulate the workings of our designs
 logic compilers to synthesize the hardware blocks of our designs
 mapping onto programmable hardware

 Contrast with software design
 sequential and parallel implementations
 specify algorithm as well as computing/storage resources it will use



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Applications of logic design

 Conventional computer design
 CPUs, busses, peripherals

 Networking and communications
 phones, modems, routers

 Embedded products
 in cars, toys, appliances, entertainment devices

 Scientific equipment
 testing, sensing, reporting

 The world of computing is much much bigger than just PCs!



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 4

A quick history lesson

 1850: George Boole invents Boolean algebra
 maps logical propositions to symbols
 permits manipulation of logic statements using mathematics

 1938: Claude Shannon links Boolean algebra to switches
 his Masters’ thesis

 1945: John von Neumann develops the first stored program computer
 its switching elements are vacuum tubes (a big advance from relays)

 1946: ENIAC . . . The world’s first completely electronic computer
 18,000 vacuum tubes
 several hundred multiplications per minute

 1947: Shockley, Brittain, and Bardeen invent the transistor
 replaces vacuum tubes
 enable integration of multiple devices into one package
 gateway to modern electronics



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 5

What is logic design?
 What is design?

 given a specification of a problem, come up with a way of solving 
it choosing appropriately from a collection of available 
components

 while meeting some criteria for size, cost, power, beauty, 
elegance, etc.

 What is logic design?
 determining the collection of digital logic components to perform 

a specified control and/or data manipulation and/or 
communication function and the interconnections between them

 which logic components to choose? – there are many 
implementation technologies (e.g., off-the-shelf fixed-function 
components, programmable devices, transistors on a chip, etc.)

 the design may need to be optimized and/or transformed to meet 
design constraints



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 6sense

sense

driveAND

What is digital hardware?

 Collection of devices that sense and/or control wires that carry a 
digital value (i.e., a physical quantity that can be interpreted 
as a “0” or “1”)
 example: digital logic where voltage < 0.8v is a “0” and > 2.0v is a “1”
 example: pair of transmission wires where a “0” or “1” is distinguished 

by which wire has a higher voltage (differential)
 example: orientation of magnetization signifies a “0” or a “1”

 Primitive digital hardware devices
 logic computation devices (sense and drive)

 are two wires both “1” - make another be “1” (AND)
 is at least one of two wires “1” - make another be “1” (OR)
 is a wire “1” - then make another be “0” (NOT)

 memory devices (store)
 store a value
 recall a previously stored value 



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 7

What is happening now in digital 
design?
 Important trends in how industry does hardware design

 larger and larger designs
 shorter and shorter time to market
 cheaper and cheaper products

 Scale
 pervasive use of computer-aided design tools over hand methods
 multiple levels of design representation

 Time 
 emphasis on abstract design representations
 programmable rather than fixed function components
 automatic synthesis techniques
 importance of sound design methodologies

 Cost
 higher levels of integration
 use of simulation to debug designs
 simulate and verify before you build



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 8

New ability: to accomplish the logic design task with the aid of computer-aided
design tools and map a problem description into an implementation with
programmable logic devices after validation via simulation and understanding
of  the advantages/disadvantages as compared to a software implementation

CSE 370: concepts/skills/abilities

 Understanding the basics of logic design (concepts)
 Understanding sound design methodologies (concepts)
 Modern specification methods (concepts)
 Familiarity with a full set of CAD tools (skills)
 Realize digital designs in an implementation technology (skills)
 Appreciation for the differences and similarities (abilities)

in hardware and software design



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 9

Computation: abstract vs. 
implementation
 Up to now, computation has been a mental exercise (paper, 

programs)
 This class is about physically implementing computation using 

physical devices that use voltages to represent logical values
 Basic units of computation are:

 representation: "0", "1" on a wire
set of wires (e.g., for binary ints)

 assignment: x  =  y
 data operations: x + y – 5
 control: 

sequential statements: A; B; C
conditionals: if   x == 1   then   y
loops: for ( i = 1 ; i == 10, i++)
procedures: A; proc(...); B;

 We will study how each of these are implemented in hardware 
and composed into computational structures



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 10

close switch (if A is “1” or asserted)
and turn on light bulb (Z)

A Z

open switch (if A is “0” or unasserted)
and turn off light bulb (Z)

Switches: basic element of physical 
implementations
 Implementing a simple circuit (arrow shows action if wire 

changes to “1”):

Z  ≡  A

A
Z



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 11

AND

OR

Z ≡  A and B

Z ≡  A or B 

A B

A

B

Switches (cont’d)

 Compose switches into more complex ones (Boolean 
functions):



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Switching networks

 Switch settings
 determine whether or not a conducting path exists to light 

the light bulb
 To build larger computations

 use a light bulb (output of the network) to set other switches 
(inputs to another network).

 Connect together switching networks
 to construct larger  switching networks, i.e., there is a way to 

connect outputs of one network to the inputs of the next.



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 13

conducting
path composed

of switches
closes circuit

current flowing through coil 
magnetizes core and causes normally 
closed (nc) contact to be pulled open

when no current flows, the spring of the contact 
returns it to its normal position

Relay networks

 A simple way to convert between conducting paths and 
switch settings is to use (electro-mechanical) relays.

 What is a relay?

What determines the switching speed of a relay network?



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 14

Transistor networks

 Relays aren't used much anymore
 some traffic light controllers are still electro-mechanical

 Modern digital systems are designed in CMOS technology
 MOS stands for Metal-Oxide on Semiconductor
 C is for complementary because there are both normally-open 

and normally-closed switches
 MOS transistors act as voltage-controlled switches

 similar, though easier to work with than relays. 



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 15

n-channel
open when voltage at G is low

closes when:
voltage(G) > voltage (S) + ε

p-channel
closed when voltage at G is low

opens when:
voltage(G) < voltage (S) – ε

MOS transistors

 MOS transistors have three terminals: drain, gate, and source
 they act as switches in the following way:

if the voltage on the gate terminal is (some amount) higher/lower 
than the source terminal then a conducting path will be 
established between the drain and source terminals

G

S D

G

S D



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 16

3v

X

Y 0 volts

x y

3 volts0v

what  is the 
relationship 

between x and y?

MOS networks

0 volts

3 volts



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 17

x y z1 z2

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts

3 volts

3 volts

what  is the 
relationship 

between x, y and z?

Two input networks

3v

X Y

0v

Z1

3v

X Y

0v

Z2

3 volts

3 volts

3 volts

0 volts

3 volts

0 volts

0 volts

0 volts

NAND NOR



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 18

Speed of MOS networks

 What influences the speed of CMOS networks?
 charging and discharging of voltages on wires and gates of 

transistors
 Capacitors hold charge

 capacitance is at gates of transistors and wire material
 Resistors slow movement of electrons

 resistance mostly due to transistors



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 19

scope of CSE 370

Representation of digital designs

 Physical devices (transistors,  relays)
 Switches
 Truth tables
 Boolean algebra
 Gates
 Waveforms
 Finite state behavior
 Register-transfer behavior
 Concurrent abstract specifications



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 20

Digital vs. analog

 Convenient to think of digital systems as having only
discrete, digital, input/output values

 In reality, real electronic components exhibit
continuous, analog, behavior

 Why do we make the digital abstraction anyway?
 switches operate this way
 easier to think about a small number of discrete values

 Why does it work?
 does not propagate small errors in values
 always resets to 0 or 1



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 21

Technology   State 0    State 1

Relay logic Circuit Open Circuit Closed
CMOS logic 0.0-1.0 volts 2.0-3.0 volts
Transistor transistor logic (TTL)0.0-0.8 volts 2.0-5.0 volts
Fiber Optics Light off Light on
Dynamic RAM Discharged capacitor Charged capacitor
Nonvolatile memory (erasable) Trapped electrons No trapped electrons
Programmable ROM Fuse blown Fuse intact
Bubble memory No magnetic bubbleBubble present
Magnetic disk No flux reversal Flux reversal
Compact disc No pit Pit

Mapping from physical world to 
binary world



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 22

inputs outputssystem

Combinational vs. sequential digital 
circuits
 A simple model of a digital system is a unit with inputs and 

outputs:

 Combinational means "memory-less"
 a digital circuit is combinational if its output values

only depend on its input values



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 23

easy to implement
with CMOS transistors
(the switches we have
available and use most)

Combinational logic symbols

 Common combinational logic systems have standard symbols 
called logic gates

 Buffer, NOT

 AND, NAND

 OR, NOR

Z

A
B

Z

Z

A

A
B



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 24

Sequential logic

 Sequential systems
 exhibit behaviors (output values) that depend not only 

on the current input values, but also on previous input values
 In reality, all real circuits are sequential

 because the outputs do not change instantaneously after an 
input change

 why not, and why is it then sequential?
 A fundamental abstraction of digital design is to reason 

(mostly) about steady-state behaviors
 look at the outputs only after sufficient time has elapsed for the 

system to make its required changes and settle down



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 25

Synchronous sequential digital 
systems
 Outputs of a combinational circuit depend only on current inputs

 after sufficient time has elapsed
 Sequential circuits have memory

 even after waiting for the transient activity to finish
 The steady-state abstraction is so useful that most designers 

use a form of  it when constructing sequential circuits:
 the memory of a system is represented as its state
 changes in system state are only allowed to occur at specific times 

controlled by an external periodic clock
 the clock period is the time that elapses between state changes it 

must be sufficiently long so that the system reaches a steady-state 
before the next state change at the end of the period



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 26

B

A
C

Clock

Example of combinational and 
sequential logic

 Combinational:
 input A, B
 wait for clock edge
 observe C
 wait for another clock edge
 observe C again: will stay the same

 Sequential:
 input A, B
 wait for clock edge
 observe C
 wait for another clock edge
 observe C again: may be different



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 27

Abstractions

 Some we've seen already
 digital interpretation of analog values
 transistors as switches
 switches as logic gates
 use of a clock to realize a synchronous sequential circuit

 Some others we will see
 truth tables and Boolean algebra to represent combinational logic
 encoding of signals with more than two logical values into 

binary form
 state diagrams to represent sequential logic
 hardware description languages to represent digital logic
 waveforms to represent temporal behavior



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 28

An example

 Calendar subsystem: number of days in a month (to control 
watch display)
 used in controlling the display of a wrist-watch LCD screen

 inputs: month, leap year flag
 outputs: number of days



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 29

Implementation in software

integer number_of_days ( month, leap_year_flag) 
{
switch (month) {

case 1: return (31);

case 2: if (leap_year_flag == 1) then return (29)
                               else return (28);

case 3: return (31);

...

case 12: return (31);

default: return (0);

}

}



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 30

leapmonth

d28d29d30d31

month leap d28 d29 d30 d31
0000 – – – – – 
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
0101 – 0 0 0 1
0110 – 0 0 1 0
0111 – 0 0 0 1
1000 – 0 0 0 1
1001 – 0 0 1 0
1010 – 0 0 0 1
1011 – 0 0 1 0
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –

Implementation as a
combinational digital system
 Encoding:

 how many bits for each input/output?
 binary number for month
 four wires for 28, 29, 30, and 31

 Behavior:
 combinational
 truth table

specification



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 31

symbol 
for and

symbol 
for or

symbol 
for not

Combinational example (cont’d)

 Truth-table to logic to switches to gates
 d28 = 1 when month=0010 and leap=0
 d28 = m8'•m4'•m2•m1'•leap'

 d31 = 1 when month=0001 or month=0011 or ... month=1100
 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + ... 

(m8•m4•m2'•m1')
 d31 = can we simplify more?

month leap d28 d29 d30 d31
0001 – 0 0 0 1
0010 0 1 0 0 0
0010 1 0 1 0 0
0011 – 0 0 0 1
0100 – 0 0 1 0
...
1100 – 0 0 0 1
1101 – – – – –
111– – – – – –
0000 – – – – –



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 32

Combinational example (cont’d)

 d28 = m8'•m4'•m2•m1'•leap’
 d29 = m8'•m4'•m2•m1'•leap
 d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') +     

          (m8•m4'•m2'•m1) + (m8•m4'•m2•m1) 
       = (m8'•m4•m1') + (m8•m4'•m1)

 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) + 
          (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) + 
          (m8•m4'•m2'•m1') + (m8•m4'•m2•m1') + 
          (m8•m4•m2'•m1')



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Activity

 How much can we simplify d31?

 What if we started the months with 0 instead of 1?
(i.e., January is 0000 and December is 1011)

d31 is true if: month is 7 or less and odd (1, 3, 5, 7), or
month is 8 or more and even (8, 10, 12, and includes 14)

d31 is true if: m8 is 0 and m1 is 1, or m8 is 1 and m1 is 0

d31 = m8’m1 + m8m1’

More complex expression (0, 2, 4, 6, 7, 9, 11):

d31 = m8’m4’m2’m1’ + m8’m4’m2m1’ + m8’m4m2’m1’ + m8’m4m2m1’
+ m8’m4m2m1 + m8m4’m2’m1 + m8m4’m2m1

d31 = m8’m1’ + m8’m4m2 + m8m1  (includes 13 and 15)
d31 = (d28 + d29 + d30)’



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Combinational example (cont’d)

 d28 = m8'•m4'•m2•m1'•leap’
 d29 = m8'•m4'•m2•m1'•leap
 d30 = (m8'•m4•m2'•m1') + (m8'•m4•m2•m1') + 

          (m8•m4'•m2'•m1) + (m8•m4'•m2•m1)
 d31 = (m8'•m4'•m2'•m1) + (m8'•m4'•m2•m1) +      

          (m8'•m4•m2'•m1) + (m8'•m4•m2•m1) + 
          (m8•m4'•m2'•m4') + (m8•m4'•m2•m1') + 
          (m8•m4•m2'•m1')



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 35

Another example

 Door combination lock:
 punch in 3 values in sequence and the door opens; if there is an 

error the lock must be reset; once the door opens the lock must 
be reset

 inputs: sequence of input values, reset
 outputs: door open/close
 memory: must remember combination

or always have it available as an input



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 36

Implementation in software

integer combination_lock ( ) {
integer v1, v2, v3;
integer error = 0;
static integer c[3] = 3, 4, 2;

while (!new_value( ));
v1 = read_value( );
if (v1 != c[1]) then error = 1;

while (!new_value( ));
v2 = read_value( );
if (v2 != c[2]) then error = 1;

while (!new_value( ));
v3 = read_value( );
if (v2 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);

}



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 37

Implementation as a sequential 
digital system

 Encoding:
 how many bits per input value?
 how many values in sequence?
 how do we know a new input value is entered?
 how do we represent the states of the system?

 Behavior:
 clock wire tells us when it’s ok

to look at inputs
(i.e., they have settled after change)

 sequential: sequence of values
must be entered

 sequential: remember if an error occurred
 finite-state specification

resetvalue

open/closed

new

clock
state



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 38

C2!=value
& new

C3!=value
& new

reset

not newnot newnot new

closed

S1

closed
C1=value

& new

S2

closed
C2=value

& new

S3

C3=value
& new

OPEN

open

C1!=value
& new

closed

ERR

Sequential example (cont’d):
abstract control
 Finite-state diagram

 states: 5 states
 represent point in execution of machine
 each state has outputs

 transitions: 6 from state to state, 5 self transitions, 1 global
 changes of state occur when clock says it’s ok
 based on value of inputs

 inputs: reset, new, results of comparisons
 output: open/closed



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 39

reset

open/closed

new

C1 C2 C3

comparator

value

equal

multiplexer

equal

controller
mux 
control

clock

Sequential example (cont’d):
data-path vs. control
 Internal structure

 data-path
 storage for combination
 comparators

 control
 finite-state machine controller
 control for data-path
 state changes controlled by clock



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 40

closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open

Sequential example (cont’d):
finite-state machine
 Finite-state machine

 refine state diagram to include internal structure



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 41

reset new equal state state mux open/closed
1 – – – S1 C1 closed
0 0 – S1 S1 C1 closed
0 1 0 S1 ERR – closed
0 1 1 S1 S2 C2 closed
0 0 – S2 S2 C2 closed
0 1 0 S2 ERR – closed
0 1 1 S2 S3 C3 closed
0 0 – S3 S3 C3 closed
0 1 0 S3 ERR – closed
0 1 1 S3 OPEN – open 
0  – – OPEN OPEN – open
0  – – ERR ERR – closed

next

Sequential example (cont’d):
finite-state machine
 Finite-state machine

 generate state table (much like a truth-table) closed

closed
mux=C1

reset equal
& new

not equal
& new

not equal
& new

not equal
& new

not newnot newnot new

S1 S2 S3 OPEN

ERR

closed
mux=C2 equal

& new

closed
mux=C3 equal

& new

open



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 42

Sequential example (cont’d):
encoding

 Encode state table
 state can be: S1, S2, S3, OPEN, or ERR

 needs at least 3 bits to encode: 000, 001, 010, 011, 100
 and as many as 5: 00001, 00010, 00100, 01000, 10000
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 output mux can be: C1, C2, or C3
 needs 2 to 3 bits to encode
 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 needs 1 or 2 bits to encode
 choose 1 bits: 1, 0



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 43

good choice of encoding!

mux is identical to 
last 3 bits of state

open/closed is
identical to first bit
of state

Sequential example (cont’d):
encoding
 Encode state table

 state can be: S1, S2, S3, OPEN, or ERR
 choose 4 bits: 0001, 0010, 0100, 1000, 0000

 output mux can be: C1, C2, or C3
 choose 3 bits: 001, 010, 100

 output open/closed can be: open or closed
 choose 1 bits: 1, 0

reset new equal state state mux open/closed
1 – – – 0001 001 0 
0 0 – 0001 0001 001 0
0 1 0 0001 0000 – 0
0 1 1 0001 0010 010 0 
0 0 – 0010 0010 010 0
0 1 0 0010 0000 – 0
0 1 1 0010 0100 100 0 
0 0 – 0100 0100 100 0
0 1 0 0100 0000 – 0
0 1 1 0100 1000 – 1 
0  – – 1000 1000 – 1
0  – – 0000 0000 – 0

next



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 44

Activity

 Have lock always wait for 3 key presses exactly before 
making a decision
 remove reset

not equal
& new

not equal
& new

closed
mux=C1 equal

& new

not newnot newnot new

S1 S2 S3 OPEN
closed

mux=C2 equal
& new

closed
mux=C3 equal

& new

open

not equal
& new

closed

E2

not new not new

closed

E3
new

closed

ERR
new



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 45

reset

open/closed

new equal

controller
mux 
control

clock

reset

open/closed

new equal

mux 
control

clock

comb. logic

state

special circuit element, 
called a register, for 
remembering inputs
when told to by clock

Sequential example (cont’d):
controller implementation
 Implementation of the controller



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 46

system

data-path control

state
registers

combinational
logic

multiplexer comparator
code

registers

register logic

switching
networks

Design hierarchy



I - Introduction © Copyright 2004, Gaetano Borriello and Randy H. Katz 47

Summary

 That was what the entire course is about
 converting solutions to problems into combinational and 

sequential networks effectively organizing the design 
hierarchically

 doing so with a modern set of design tools that lets us handle 
large designs effectively

 taking advantage of optimization opportunities

 Now lets do it again
 this time we'll take nine weeks instead of one


