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Combinational Logic Technologies

 Standard gates
 gate packages
 cell libraries

 Regular logic
 multiplexers
 decoders 

 Two-level programmable logic
 PALs
 PLAs
 ROMs
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Random logic

 Transistors quickly integrated into logic gates (1960s)
 Catalog of common gates (1970s)

 Texas Instruments Logic Data Book – the yellow bible
 all common packages listed and characterized (delays, power)
 typical packages: 

 in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

 Today, very few parts are still in use
 However, parts libraries exist for chip design

 designers reuse already characterized logic gates on chips
 same reasons as before
 difference is that the parts don’t exist in physical inventory – 

created as needed
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Random logic

 Too hard to figure out exactly what gates to use
 map from logic to NAND/NOR networks
 determine minimum number of packages

 slight changes to logic function could decrease cost

 Changes to difficult to realize
 need to rewire parts
 may need new parts
 design with spares (few extra inverters and gates on every board)
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Regular logic

 Need to make design faster
 Need to make engineering changes easier to make
 Simpler for designers to understand and map to functionality

 harder to think in terms of specific gates
 better to think in terms of a large multi-purpose block
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multiplexer demultiplexer 4x4 switch

control control

Making connections

 Direct point-to-point connections between gates
 wires we've seen so far

 Route one of many inputs to a single output --- multiplexer
 Route a single input to one of many outputs --- demultiplexer
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Mux and demux

 Switch implementation of multiplexers and demultiplexers
 can be composed to make arbitrary size switching networks
 used to implement multiple-source/multiple-destination 

interconnections

A

B

Y

Z

A

B

Y

Z
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multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)

 Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

S0 S1
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two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z
0 I0
1 I1

I1 I0 A Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0  + A I1

Multiplexers/selectors

 Multiplexers/selectors: general concept
 2n data inputs, n control inputs (called "selects"), 1 output
 used to connect 2n points to a single point
 control signal pattern forms binary index of input connected to 

output
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2   -1
I0
I1
I2
I3
I4
I5
I6
I7

A  B  C

8:1
mux

Z

I0
I1
I2
I3

A  B

4:1
mux

ZI0
I1

A

2:1
mux Z

k=0

n

Multiplexers/selectors (cont'd)

 2:1 mux: Z = A'I0 + AI1

 4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3

 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
       AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7 

 In general: Z = Σ      (mkIk)

 in minterm shorthand form for a 2n:1 Mux



IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Gate level implementation of muxes

 2:1 mux

 4:1 mux
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control signals B and C simultaneously choose 
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A  B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers

 Large multiplexers can be made by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B  C

4:1
mux

4:1
mux

2:1
mux

8:1
mux
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Multiplexers as general-purpose logic

 A 2n:1 multiplexer can implement any function of n variables
 with the variables used as control inputs and
 the data inputs tied to 0 or 1
 in essence, a lookup table

 Example:
 F(A,B,C) = m0 + m2 + m6 + m7

               = A'B'C' + A'BC' + ABC' + ABC
=   A'B'C'(1) + A'B'C(0) 
   + A'BC'(1) + A'BC(0) 
   + AB'C'(0) + AB'C(0) 
    + ABC'(1) + ABC(1)

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
       AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

CA B

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

Z

1
0
1
0
0
0
1
1

F
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A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic 
(cont’d)

 A 2n-1:1 multiplexer can implement any function of n variables
 with n-1 variables used as control inputs and
 the data inputs tied to the last variable or its complement

 Example:
 F(A,B,C) = m0 + m2 + m6 + m7

               = A'B'C' + A'BC' + ABC' + ABC
               = A'B'(C') + A'B(C') + AB'(0) + AB(1)
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n-1 mux control 
variables

single mux data 
variable

four possible
configurations
of truth table
rows can be
expressed as
a function of In

I0 I1 . . . In-1 In   F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 In In' 1

Multiplexers as general-purpose logic 
(cont’d)
 Generalization

 Example: 
G(A,B,C,D)
can be realized
by an 8:1 MUX

choose A,B,C as 
control variables

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

A B C D G
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1

D

0

1

D'

D

D’

D’
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Activity

 Realize F = B’CD’ + ABC’ with a 4:1 multiplexer and a 
minimum of other gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

0 when B’C’

D’ when B’C

A when BC’

0 when BC

Z = B’C’(0) + B’C(D’) + BC’(A) + BC(0)

B C

S1 S0

F
0
1
2
3

4:1 MUX

0
D’
A
0
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1:2 Decoder:
O0 = G •  S’
O1 = G •  S 

    2:4 Decoder:    
O0 = G •  S1’ •  S0’
O1 = G •  S1’ •  S0
O2 = G •  S1  •  S0’
O3 = G •  S1  •  S0

        3:8 Decoder:          
O0 = G •  S2’ •  S1’ • S0’
O1 = G •  S2’ •  S1’ • S0
O2 = G •  S2’ •  S1  • S0’
O3 = G •  S2’ •  S1  • S0
O4 = G •  S2  •  S1’ • S0’
O5 = G •  S2  •  S1’ • S0
O6 = G •  S2  •  S1  • S0’
O7 = G •  S2  •  S1  • S0

Demultiplexers/decoders

 Decoders/demultiplexers: general concept
 single data input, n control inputs, 2n  outputs
 control inputs (called “selects” (S)) represent binary index of 

output to which the input is connected
 data input usually called “enable” (G)
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active-high 
enable

active-low 
enable

active-high 
enable

active-low 
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate level implementation of 
demultiplexers
 1:2 decoders

 2:4 decoders
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demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as general-purpose 
logic
 A n:2n decoder can implement any function of n variables

 with the variables used as control inputs
 the enable inputs tied to 1 and
 the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7S2

3:8 DEC

S1 S0

“1”
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F1

F2

F3

Demultiplexers as general-purpose 
logic (cont’d)

 F1 = A'BC'D + A'B'CD + ABCD
 F2 = ABC'D' + ABC
 F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D
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0 A'B'C'D'E'
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

A B

0
1
2
3S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7

S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders

 5:32 decoder
 1x2:4 decoder
 4x3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE
EC D

S2 S1 S0 S2

3:8 DEC

S1 S0
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•   •   •

inputs

AND
array

•   •   •

outputs

OR
arrayproduct

terms

Programmable logic arrays

 Pre-fabricated building block of many AND/OR gates
 actually NOR or NAND
 "personalized" by making/breaking connections among the gates
 programmable array block diagram for sum of products form
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example:
F0 = A  + B' C'
F1 = A C'  +  A B
F2 = B' C'  +  A B
F3 = B' C  +  A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1 reuse of terms

Enabling concept

 Shared product terms among outputs
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Before programming

 All possible connections are available before "programming"
 in reality, all AND and OR gates are NANDs
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A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After programming

 Unwanted connections are "blown"
 fuse (normally connected, break unwanted ones)
 anti-fuse (normally disconnected, make wanted connections)
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notation for implementing
F0 = A B  +  A' B'
F1 = C D'  +  C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in 
structures

 Short-hand notation so we don't have to draw all the wires
    signifies a connection is present and perpendicular signal is an 

input to gate
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A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

 Multiple functions of A, B, C
 F1 = A B C
 F2 = A + B + C
 F3 = A' B' C'
 F4 = A' + B' + C'
 F5 = A xor B xor C
 F6 = A xnor B xnor C
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a given column of the OR array 
has access to only a subset of 

the possible product terms

PALs and PLAs

 Programmable logic array (PLA)
 what we've seen so far
 unconstrained fully-general AND and OR arrays

 Programmable array logic (PAL)
 constrained topology of the OR array
 innovation by Monolithic Memories
 faster and smaller OR plane
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minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

 BCD to Gray code converter
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not a particularly good
candidate for PAL/PLA

implementation since no terms 
are shared among outputs

however, much more compact 
and regular implementation 

when compared with discrete 
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example 
(cont’d)
 Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z
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4 product terms 
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example 
(cont’d)
 Code converter: programmed PAL
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W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

AA

D

D

D

\D

\D

PALs and PLAs: design example 
(cont’d)
 Code converter: NAND gate implementation

 loss or regularity, harder to understand
 harder to make changes



IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 32
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design 
example
 Magnitude comparator

A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0minimized functions:

EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’     NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD                            GT = AC’ + ABC + BC’D’
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Activity

 Map the following functions to the PLA below:
 W = AB + A’C’ + BC’
 X = ABC + AB’ + A’B
 Y = ABC’ + BC + B’C’

A B C

W X Y
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Activity (cont’d)

 9 terms won’t fit in a 7 term PLA
 can apply concensus theorem

to W to simplify to:
W = AB + A’C’

 8 terms wont’ fit in a 7 term PLA
 observe that AB = ABC + ABC’
 can rewrite W to reuse terms:

W = ABC + ABC’ + A’C’
 Now it fits

 W = ABC + ABC’ + A’C’
 X = ABC + AB’ + A’B
 Y = ABC’ + BC + B’C’

 This is called technology mapping
 manipulating logic functions

so that they can use available 
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y
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decoder

0 n-1

Address

2   -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through 
resistor – selectively connected to 0 
by word line controlled switches)

j

i

internal organization

word lines (only one 
is active – decoder is 
just right for this)

Read-only memories

 Two dimensional array of 1s and 0s
 entry (row) is called a "word"
 width of row = word-size
 index is called an "address"
 address is input
 selected word is output
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F0 = A' B' C  +  A B' C'  +  A B' C

F1 = A' B' C  +  A' B C'  +  A B C

F2 = A' B' C'  +  A' B' C  +  A B' C'

F3 = A' B C  +  A B' C'  + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0 F1 F2 F3

ROMs and combinational logic

 Combinational logic implementation (two-level canonical form) 
using a ROM
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ROM structure

 Similar to a PLA structure but with a fully decoded AND array
 completely flexible OR array (unlike PAL)

n address lines

•   •   •

inputs

decoder 2n word
lines

•   •   •

outputs

memory
array

(2n words
by m bits)

m data lines
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ROM vs. PLA

 ROM approach advantageous when
 design time is short (no need to minimize output functions)
 most input combinations are needed (e.g., code converters)
 little sharing of product terms among output functions

 ROM problems
 size doubles for each additional input
 can't exploit don't cares

 PLA approach advantageous when
 design tools are available for multi-output minimization
 there are relatively few unique minterm combinations
 many minterms are shared among the output functions

 PAL problems
 constrained fan-ins on OR plane
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Regular logic structures for two-level 
logic
 ROM – full AND plane, general OR plane

 cheap (high-volume component)
 can implement any function of n inputs
 medium speed

 PAL – programmable AND plane, fixed OR plane
 intermediate cost
 can implement functions limited by number of terms
 high speed (only one programmable plane that is much smaller than 

ROM's decoder)
 PLA – programmable AND and OR planes

 most expensive (most complex in design, need more sophisticated tools)
 can implement any function up to a product term limit
 slow (two programmable planes)
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Regular logic structures for multi-
level logic
 Difficult to devise a regular structure for arbitrary connections 

between a large set of different types of gates
 efficiency/speed concerns for such a structure
 in 467 you'll learn about field programmable gate arrays (FPGAs) 

that are just such programmable multi-level structures
 programmable multiplexers for wiring
 lookup tables for logic functions (programming fills in the table)
 multi-purpose cells (utilization is the big issue)

 Use multiple levels of PALs/PLAs/ROMs
 output intermediate result
 make it an input to be used in further logic
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Combinational logic technology 
summary
 Random logic

 Single gates or in groups
 conversion to NAND-NAND and NOR-NOR networks
 transition from simple gates to more complex gate building blocks
 reduced gate count, fan-ins, potentially faster
 more levels, harder to design

 Time response in combinational networks
 gate delays and timing waveforms
 hazards/glitches (what they are and why they happen)

 Regular logic
 multiplexers/decoders
 ROMs
 PLAs/PALs
 advantages/disadvantages of each


