
IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 1

Combinational Logic Technologies

 Standard gates
 gate packages
 cell libraries

 Regular logic
 multiplexers
 decoders

 Two-level programmable logic
 PALs
 PLAs
 ROMs

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 2

Random logic

 Transistors quickly integrated into logic gates (1960s)
 Catalog of common gates (1970s)

 Texas Instruments Logic Data Book – the yellow bible
 all common packages listed and characterized (delays, power)
 typical packages:

 in 14-pin IC: 6-inverters, 4 NAND gates, 4 XOR gates

 Today, very few parts are still in use
 However, parts libraries exist for chip design

 designers reuse already characterized logic gates on chips
 same reasons as before
 difference is that the parts don’t exist in physical inventory –

created as needed

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 3

Random logic

 Too hard to figure out exactly what gates to use
 map from logic to NAND/NOR networks
 determine minimum number of packages

 slight changes to logic function could decrease cost

 Changes to difficult to realize
 need to rewire parts
 may need new parts
 design with spares (few extra inverters and gates on every board)

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 4

Regular logic

 Need to make design faster
 Need to make engineering changes easier to make
 Simpler for designers to understand and map to functionality

 harder to think in terms of specific gates
 better to think in terms of a large multi-purpose block

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 5

multiplexer demultiplexer 4x4 switch

control control

Making connections

 Direct point-to-point connections between gates
 wires we've seen so far

 Route one of many inputs to a single output --- multiplexer
 Route a single input to one of many outputs --- demultiplexer

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 6

Mux and demux

 Switch implementation of multiplexers and demultiplexers
 can be composed to make arbitrary size switching networks
 used to implement multiple-source/multiple-destination

interconnections

A

B

Y

Z

A

B

Y

Z

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 7

multiple input sources

multiple output destinations

MUX

A B

Sum

Sa

Ss

Sb

B0

MUX

DEMUX

Mux and demux (cont'd)

 Uses of multiplexers/demultiplexers in multi-point connections

B1A0 A1

S0 S1

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 8

two alternative forms
for a 2:1 Mux truth table

functional form

logical form

A Z
0 I0
1 I1

I1 I0 A Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Z = A' I0 + A I1

Multiplexers/selectors

 Multiplexers/selectors: general concept
 2n data inputs, n control inputs (called "selects"), 1 output
 used to connect 2n points to a single point
 control signal pattern forms binary index of input connected to

output

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 9

2 -1
I0
I1
I2
I3
I4
I5
I6
I7

A B C

8:1
mux

Z

I0
I1
I2
I3

A B

4:1
mux

ZI0
I1

A

2:1
mux Z

k=0

n

Multiplexers/selectors (cont'd)

 2:1 mux: Z = A'I0 + AI1

 4:1 mux: Z = A'B'I0 + A'BI1 + AB'I2 + ABI3

 8:1 mux: Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

 In general: Z = Σ (mkIk)

 in minterm shorthand form for a 2n:1 Mux

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 10

Gate level implementation of muxes

 2:1 mux

 4:1 mux

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 11

control signals B and C simultaneously choose
one of I0, I1, I2, I3 and one of I4, I5, I6, I7

control signal A chooses which of the
upper or lower mux's output to gate to Z

alternative
implementation

C

Z

A B

4:1
mux

2:1
mux

2:1
mux

2:1
mux

2:1
mux

I4
I5

I2
I3

I0
I1

I6
I7

8:1
mux

Cascading multiplexers

 Large multiplexers can be made by cascading smaller ones

Z

I0
I1
I2
I3

A

I4
I5
I6
I7

B C

4:1
mux

4:1
mux

2:1
mux

8:1
mux

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 12

Multiplexers as general-purpose logic

 A 2n:1 multiplexer can implement any function of n variables
 with the variables used as control inputs and
 the data inputs tied to 0 or 1
 in essence, a lookup table

 Example:
 F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC
= A'B'C'(1) + A'B'C(0)
 + A'BC'(1) + A'BC(0)
 + AB'C'(0) + AB'C(0)
 + ABC'(1) + ABC(1)

Z = A'B'C'I0 + A'B'CI1 + A'BC'I2 + A'BCI3 +
 AB'C'I4 + AB'CI5 + ABC'I6 + ABCI7

CA B

0
1
2
3
4
5
6
7
S2

8:1 MUX

S1 S0

Z

1
0
1
0
0
0
1
1

F

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 13

A B C F
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

C'

C'

0

1 A B

S1 S0

F
0
1
2
3

4:1 MUX

C'
C'
0
1

F

CA B

0
1
2
3
4
5
6
7

1
0
1
0
0
0
1
1

S2

8:1 MUX

S1 S0

Multiplexers as general-purpose logic
(cont’d)

 A 2n-1:1 multiplexer can implement any function of n variables
 with n-1 variables used as control inputs and
 the data inputs tied to the last variable or its complement

 Example:
 F(A,B,C) = m0 + m2 + m6 + m7

 = A'B'C' + A'BC' + ABC' + ABC
 = A'B'(C') + A'B(C') + AB'(0) + AB(1)

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 14

n-1 mux control
variables

single mux data
variable

four possible
configurations
of truth table
rows can be
expressed as
a function of In

I0 I1 . . . In-1 In F

. . . . 0 0 0 1 1

. . . . 1 0 1 0 1

0 In In' 1

Multiplexers as general-purpose logic
(cont’d)
 Generalization

 Example:
G(A,B,C,D)
can be realized
by an 8:1 MUX

choose A,B,C as
control variables

CA B

0
1
2
3
4
5
6
7

1
D
0
1
D’
D
D’
D’

S2

8:1 MUX

S1 S0

A B C D G
0 0 0 0 1
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0

1

D

0

1

D'

D

D’

D’

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 15

Activity

 Realize F = B’CD’ + ABC’ with a 4:1 multiplexer and a
minimum of other gates:

A B C D Z
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

0 when B’C’

D’ when B’C

A when BC’

0 when BC

Z = B’C’(0) + B’C(D’) + BC’(A) + BC(0)

B C

S1 S0

F
0
1
2
3

4:1 MUX

0
D’
A
0

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 16

1:2 Decoder:
O0 = G • S’
O1 = G • S

 2:4 Decoder:
O0 = G • S1’ • S0’
O1 = G • S1’ • S0
O2 = G • S1 • S0’
O3 = G • S1 • S0

 3:8 Decoder:
O0 = G • S2’ • S1’ • S0’
O1 = G • S2’ • S1’ • S0
O2 = G • S2’ • S1 • S0’
O3 = G • S2’ • S1 • S0
O4 = G • S2 • S1’ • S0’
O5 = G • S2 • S1’ • S0
O6 = G • S2 • S1 • S0’
O7 = G • S2 • S1 • S0

Demultiplexers/decoders

 Decoders/demultiplexers: general concept
 single data input, n control inputs, 2n outputs
 control inputs (called “selects” (S)) represent binary index of

output to which the input is connected
 data input usually called “enable” (G)

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 17

active-high
enable

active-low
enable

active-high
enable

active-low
enable

O0G

S

O1

O0\G

S

O1

S1

O2

O3

O0G

O1

S0 S1

O2

O3

O0\G

O1

S0

Gate level implementation of
demultiplexers
 1:2 decoders

 2:4 decoders

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 18

demultiplexer generates appropriate
minterm based on control signals

(it "decodes" control signals)

Demultiplexers as general-purpose
logic
 A n:2n decoder can implement any function of n variables

 with the variables used as control inputs
 the enable inputs tied to 1 and
 the appropriate minterms summed to form the function

A'B'C'
A'B'C
A'BC'
A'BC
AB'C'
AB'C
ABC'
ABC

CA B

0
1
2
3
4
5
6
7S2

3:8 DEC

S1 S0

“1”

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 19

F1

F2

F3

Demultiplexers as general-purpose
logic (cont’d)

 F1 = A'BC'D + A'B'CD + ABCD
 F2 = ABC'D' + ABC
 F3 = (A' + B' + C' + D')

A B

0 A'B'C'D'
1 A'B'C'D
2 A'B'CD'
3 A'B'CD
4 A'BC'D'
5 A'BC'D
6 A'BCD'
7 A'BCD
8 AB'C'D'
9 AB'C'D
10 AB'CD'
11 AB'CD
12 ABC'D'
13 ABC'D
14 ABCD'
15 ABCD

4:16
DECEnable

C D

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 20

0 A'B'C'D'E'
1
2
3
4
5
6
7

S2

3:8 DEC

S1 S0

A B

0
1
2
3S1

2:4 DEC

S0

F

0
1
2 A'BC'DE'
3
4
5
6
7

S2

3:8 DEC

S1 S0

EC D

0 AB'C'D'E'
1
2
3
4
5
6
7 AB'CDE

Cascading decoders

 5:32 decoder
 1x2:4 decoder
 4x3:8 decoders

3:8 DEC

0
1
2
3
4
5
6
7 ABCDE
EC D

S2 S1 S0 S2

3:8 DEC

S1 S0

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 21

• • •

inputs

AND
array

• • •

outputs

OR
arrayproduct

terms

Programmable logic arrays

 Pre-fabricated building block of many AND/OR gates
 actually NOR or NAND
 "personalized" by making/breaking connections among the gates
 programmable array block diagram for sum of products form

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 22

example:
F0 = A + B' C'
F1 = A C' + A B
F2 = B' C' + A B
F3 = B' C + A

personality matrix 1 = uncomplemented in term
0 = complemented in term
– = does not participate

1 = term connected to output
0 = no connection to output

input side:

output side:

product inputs outputs
term A B C F0 F1 F2 F3

AB 1 1 – 0 1 1 0
B'C – 0 1 0 0 0 1
AC' 1 – 0 0 1 0 0
B'C' – 0 0 1 0 1 0
A 1 – – 1 0 0 1 reuse of terms

Enabling concept

 Shared product terms among outputs

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 23

Before programming

 All possible connections are available before "programming"
 in reality, all AND and OR gates are NANDs

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 24

A B C

F1 F2 F3F0

AB

B'C

AC'

B'C'

A

After programming

 Unwanted connections are "blown"
 fuse (normally connected, break unwanted ones)
 anti-fuse (normally disconnected, make wanted connections)

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 25

notation for implementing
F0 = A B + A' B'
F1 = C D' + C' D

AB+A'B'
CD'+C'D

AB

A'B'

CD'

C'D

A B C D

Alternate representation for high fan-in
structures

 Short-hand notation so we don't have to draw all the wires
 signifies a connection is present and perpendicular signal is an

input to gate

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 26

A B C F1 F2 F3 F4 F5 F6
0 0 0 0 0 1 1 0 0
0 0 1 0 1 0 1 1 1
0 1 0 0 1 0 1 1 1
0 1 1 0 1 0 1 0 0
1 0 0 0 1 0 1 1 1
1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 1 0 0
1 1 1 1 1 0 0 1 1

A'B'C'

A'B'C

A'BC'

A'BC

AB'C'

AB'C

ABC'

ABC

A B C

F1 F2 F3 F4 F5
F6

full decoder as for memory address

bits stored in memory

Programmable logic array example

 Multiple functions of A, B, C
 F1 = A B C
 F2 = A + B + C
 F3 = A' B' C'
 F4 = A' + B' + C'
 F5 = A xor B xor C
 F6 = A xnor B xnor C

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 27

a given column of the OR array
has access to only a subset of

the possible product terms

PALs and PLAs

 Programmable logic array (PLA)
 what we've seen so far
 unconstrained fully-general AND and OR arrays

 Programmable array logic (PAL)
 constrained topology of the OR array
 innovation by Monolithic Memories
 faster and smaller OR plane

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 28

minimized functions:

W = A + BD + BC
X = BC'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

A B C D W X Y Z
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0
0 1 0 0 0 1 1 0
0 1 0 1 1 1 1 0
0 1 1 0 1 0 1 0
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 0 0 1 1 0 0 0
1 0 1 – – – – –
1 1 – – – – – –

PALs and PLAs: design example

 BCD to Gray code converter

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 29

not a particularly good
candidate for PAL/PLA

implementation since no terms
are shared among outputs

however, much more compact
and regular implementation

when compared with discrete
AND and OR gates

A B C D

minimized functions:

W = A + BD + BC
X = B C'
Y = B + C
Z = A'B'C'D + BCD + AD' + B'CD'

PALs and PLAs: design example
(cont’d)
 Code converter: programmed PLA

A

BD

BC

BC'

B

C

A'B'C'D

BCD

AD'

BCD'

W X Y Z

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 30

4 product terms
per each OR gate

A

BD

BC

0

BC'

0

0

0

B

C

0

0

A'B'C'D

BCD

AD'

B'CD'

W X Y Z

A B C D

PALs and PLAs: design example
(cont’d)
 Code converter: programmed PAL

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 31

W

X

Y

Z

B

B

B

B

B

B

\B
C

C

C

C

C
A

AA

D

D

D

\D

\D

PALs and PLAs: design example
(cont’d)
 Code converter: NAND gate implementation

 loss or regularity, harder to understand
 harder to make changes

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 32
EQ NE LT GT

A'B'C'D'

A'BC'D

ABCD

AB'CD'

AC'

A'C

B'D

BD'

A'B'D

B'CD

ABC

BC'D'

A B C D

PALs and PLAs: another design
example
 Magnitude comparator

A B C D EQ NE LT GT
0 0 0 0 1 0 0 0
0 0 0 1 0 1 1 0
0 0 1 0 0 1 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 1 0 1
0 1 0 1 1 0 0 0
0 1 1 0 0 1 1 0
0 1 1 1 0 1 1 0
1 0 0 0 0 1 0 1
1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 0
1 0 1 1 0 1 1 0
1 1 0 0 0 1 0 1
1 1 0 1 0 1 0 1
1 1 1 0 0 1 0 1
1 1 1 1 1 0 0 0minimized functions:

EQ = A’B’C’D’ + A’BC’D + ABCD + AB’CD’ NE = AC’ + A’C + B’D + BD’
LT = A’C + A’B’D + B’CD GT = AC’ + ABC + BC’D’

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 33

Activity

 Map the following functions to the PLA below:
 W = AB + A’C’ + BC’
 X = ABC + AB’ + A’B
 Y = ABC’ + BC + B’C’

A B C

W X Y

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 34

Activity (cont’d)

 9 terms won’t fit in a 7 term PLA
 can apply concensus theorem

to W to simplify to:
W = AB + A’C’

 8 terms wont’ fit in a 7 term PLA
 observe that AB = ABC + ABC’
 can rewrite W to reuse terms:

W = ABC + ABC’ + A’C’
 Now it fits

 W = ABC + ABC’ + A’C’
 X = ABC + AB’ + A’B
 Y = ABC’ + BC + B’C’

 This is called technology mapping
 manipulating logic functions

so that they can use available
resources

ABC

ABC’

A’C’

AB’

A’B

BC

B’C’

A B C

W X Y

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 35

decoder

0 n-1

Address

2 -1
n

0

1 1 1 1

word[i] = 0011

word[j] = 1010

bit lines (normally pulled to 1 through
resistor – selectively connected to 0
by word line controlled switches)

j

i

internal organization

word lines (only one
is active – decoder is
just right for this)

Read-only memories

 Two dimensional array of 1s and 0s
 entry (row) is called a "word"
 width of row = word-size
 index is called an "address"
 address is input
 selected word is output

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 36

F0 = A' B' C + A B' C' + A B' C

F1 = A' B' C + A' B C' + A B C

F2 = A' B' C' + A' B' C + A B' C'

F3 = A' B C + A B' C' + A B C'

truth table

A B C F0 F1 F2 F3
0 0 0 0 0 1 0
0 0 1 1 1 1 0
0 1 0 0 1 0 0
0 1 1 0 0 0 1
1 0 0 1 0 1 1
1 0 1 1 0 0 0
1 1 0 0 0 0 1
1 1 1 0 1 0 0

block diagram

ROM
8 words x 4 bits/word

address outputs
A B C F0 F1 F2 F3

ROMs and combinational logic

 Combinational logic implementation (two-level canonical form)
using a ROM

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 37

ROM structure

 Similar to a PLA structure but with a fully decoded AND array
 completely flexible OR array (unlike PAL)

n address lines

• • •

inputs

decoder 2n word
lines

• • •

outputs

memory
array

(2n words
by m bits)

m data lines

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 38

ROM vs. PLA

 ROM approach advantageous when
 design time is short (no need to minimize output functions)
 most input combinations are needed (e.g., code converters)
 little sharing of product terms among output functions

 ROM problems
 size doubles for each additional input
 can't exploit don't cares

 PLA approach advantageous when
 design tools are available for multi-output minimization
 there are relatively few unique minterm combinations
 many minterms are shared among the output functions

 PAL problems
 constrained fan-ins on OR plane

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 39

Regular logic structures for two-level
logic
 ROM – full AND plane, general OR plane

 cheap (high-volume component)
 can implement any function of n inputs
 medium speed

 PAL – programmable AND plane, fixed OR plane
 intermediate cost
 can implement functions limited by number of terms
 high speed (only one programmable plane that is much smaller than

ROM's decoder)
 PLA – programmable AND and OR planes

 most expensive (most complex in design, need more sophisticated tools)
 can implement any function up to a product term limit
 slow (two programmable planes)

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 40

Regular logic structures for multi-
level logic
 Difficult to devise a regular structure for arbitrary connections

between a large set of different types of gates
 efficiency/speed concerns for such a structure
 in 467 you'll learn about field programmable gate arrays (FPGAs)

that are just such programmable multi-level structures
 programmable multiplexers for wiring
 lookup tables for logic functions (programming fills in the table)
 multi-purpose cells (utilization is the big issue)

 Use multiple levels of PALs/PLAs/ROMs
 output intermediate result
 make it an input to be used in further logic

IV - Combinational Logic Technologies© Copyright 2004, Gaetano Borriello and Randy H. Katz 41

Combinational logic technology
summary
 Random logic

 Single gates or in groups
 conversion to NAND-NAND and NOR-NOR networks
 transition from simple gates to more complex gate building blocks
 reduced gate count, fan-ins, potentially faster
 more levels, harder to design

 Time response in combinational networks
 gate delays and timing waveforms
 hazards/glitches (what they are and why they happen)

 Regular logic
 multiplexers/decoders
 ROMs
 PLAs/PALs
 advantages/disadvantages of each

