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Equivalence between state machines M1 and M2: 

for every input signal, M1 and M2 produce the same 
output signal.

Bisimulation between M1 and M2:

the initial states of M1 and M2 are related, and for all 
related states p of M1 and q of M2, 

for every input value, p and q produce the same output 
value, and the next states are again related.



Theorem: two state machines M1 
and M2 are equivalent iff there is 
a bisimulation between M1 and M2.

How do we find a bisimulation ?



Edge Encoder

Encode : [ Nats0 ® Bins ] ® [ Nats0 ® Bins ]

such that   " x Î [ Nats0 ® Bins ] , " y Î Nats0,

(Encode (x)) (y)  =  
x (y)     if  y = 0

0          if  y > 0  and  x (y) = x (y-1) 

1           if  y > 0  and  x (y) ¹ x (y-1) 



Encode
Nats0 ® Bins Nats0 ® Bins

0 1 1 0 0 0 1 … 0 1 0 1 0 0 1 …



Edge Encoder

State between time t-1 and t:

0         if t > 0 and input at time t-1 was 0

1          if t > 0 and input at time t-1 was 1
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Edge Encoder
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Edge Encoder

1 / 00 / 0



Edge Encoder

State between time t-1 and t:

0         if t > 0 and input at time t-1 was 0, or  t = 0

1          if t > 0 and input at time t-1 was 1



Encode Decode
Nats0 ® Bins Nats0 ® Bins

0 1 1 0 0 0 1 … 0 1 1 0 0 0 1 …



Decoder

State between time t-1 and t:

a          if t > 0 and output at time t-1 was 0

b          if t > 0 and output at time t-1 was 1



a b
1 / 0

1 / 1

Decoder

0 / 10 / 0



a b
1 / 0

1 / 1

Decoder

0 / 10 / 0



Decoder

State between time t-1 and t:

a          if t > 0 and output at time t-1 was 0, or  t = 0

b          if t > 0 and output at time t-1 was 1



Encode Decode

Id

should be equivalent to

4 states

1 state (memory-free)



Encode Decode
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Encode Decode
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Encode Decode
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Encode Decode
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Encode Decode
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Encode Decode

0,a

1,b0,b

1,a

1 b1 0
1

0/0

1/1
0/0

1/1



Encode Decode

0,a

1,b

0/0

1/1
0/0

1/1

Remove unreachable states



Encode Decode

Id

should be equivalent to

2 states

1 state



Encode Decode

0,a 1,b0/0
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0/0
1/1

0/0
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q



Encode Decode

0,a 1,b0/0
1/1

0/0
1/1

0/0
1/1

Id

qBisimulation  
B = { ( (0,a), q ), ( (1,b), q ) }



The Minimization Algorithm

Input :      state machine M

Output :   minimize (M), the state machine with 
the fewest states that is bisimilar to M

(the result is unique up to renaming of 
states)



If  minimize (M) = N , then:

1.  M and N are bisimilar                                              
(i.e., there is a bisimulation between M and N ).

2.  For every state machine N’ that is bisimilar to M:

2a.  N’ has at least as many states as N.

2b.  If N’ has the same number of states as N, 
then N’ and N differ only in the names of states.



The Minimization Algorithm

States 



The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm



The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm



The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm
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The Minimization Algorithm



The Minimization Algorithm

1.  Let  Q  be set of all reachable states of M. 

2.  Maintain a set P of state sets:

Initially let  P = { Q }. 

2a.   Repeat until no longer possible:  output split P.

2b.   Repeat until no longer possible:  next-state split P.

3.  When done, every state set in P represents a single 
state of the smallest state machine bisimilar to M.



Output split P

If there exist

a state set  R Î P
two states  r1 Î R  and  r2 Î R 
an input  x Î Inputs

such that 

output ( r1, x ) ¹ output ( r2, x )

then

let  R1 = { r Î R | output (r,x) = output (r1,x) } ;
let  R2  =  R \ R1 ;
let  P  =  ( P \ { R } ) È { R1, R2 } .



Output split 

R

x / zx / yr1

r2



Output split 

R1
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Next-state split P

If there exist

two state sets  R Î P  and  R’ Î P 
two states  r1 Î R  and  r2 Î R 
an input  x Î Inputs

such that 

nextState ( r1, x ) Î R’  and  nextState ( r2, x ) Ï R’   

then

let  R1 = { r Î R | nextState (r,x) Î R’ } ;
let  R2  =  R \ R1 ;
let  P  =  ( P \ { R } ) È { R1, R2 } .



Next-state split 

R’R
x / y

x / y

r1

r2



Next-state split 

R’R1
x / y

x / y

r1

r2
R2
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Q = { a, b, c, d, e, f, g }
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P = { { a, b, c, d, e, f, g } }
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Output split

P = { { a, b, c }, { d, e, f, g } }
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Next-state split

P = { { a }, { b, c }, { d, e, f, g } }
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Next-state split

P = { { a }, { b, c }, { d, e }, { f, g } }
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Minimal bisimilar state machine 

{ a } { b, c } { d, e } { f, g }



0/1 0/1
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4 instead of 7 states

{ a } { b, c } { d, e } { f, g }



Theorem:

There is a bisimulation between two state machines 
M1 and M2

iff

there is an isomorphism between minimize (M1) and 
minimize (M2)

(i.e., a bisimulation that is a one-to-one and onto 
function).

a renaming of the states



How to check if M1 and M2 are equivalent :

1. Minimize M1 and call the result N1

2. Minimize M2 and call the result N2

3. Check if the states of N1 can be renamed 
so that N1 and N2 are identical


