Equivalence

EECS 20
Lecture 12 (February 12, 2001)

Tom Henzinger

Revised by Matteo Zavatteri and Tiziano Villa, Fall 2020

Quiz

1. Draw the transition diagram of the system

Delayy: [Natsg — Bins] — [Natsy — Bins]

vV x € [Natsy — Bins], V y € Natsg,

(Delayo (x)) (y) =

if y=0

{ 0
x(y-1) ify>0

2. Draw the transition diagram of the system

—| Delayg

Delay, |—

—_— Delayo —

State before time 1
O if input at time +-1was 0, or if +=0
1 if input at time t-1 was 1

Delay,

Delay,

—| Delayg

1/0

0/0

—_— Delayo —

1/0

0/1
0/0 1/1

Delay, ¢
0 J Delay,%

S .
tate: (ql,q2)

Delay, %

Delay,™

 ——
D
ela
Yo at

® @
€

D
elay,?

—.] Delay, * J Delay,%

0/0

1/0
0,0 /

® P

® @

—.] Delay, * J Delay,%

0/0

0,0 1/0 1,0

1/0

0/0

Delay, %

0/0

1/1

Delay,

—| Delayg

Well-formed |

—p Delayo >

Feedback

Feedback : [Natsy — Unit] — [Natsy — Bins]

where Unit={"-}.

—| Delayg >

Feedback
Inputs: Unit
q X | output (q,x) nextState (q,x)
Outputs: Bins
o - 0 0
States: {0,1} : : .

initialState = O

-/ 0

Delay,

Feedback

-/ 1

—| Delayg >

Feedback

Only one run |

Time O12 3 4 5 6 7
Input
Output O 0 0O 0 0 0 0O

State O 0 0O OO0 0 0 0O

-/ 0

Delay,

Feedback

unreachable

-/ 1

A state q of a state machine M is unreachable
iff
q occurs on no run of M ;
that is, iff
there is no path from the initial state of M to q .

Unreachable states can be removed without
changing the system (input/output function)
implemented by M .

-/ 0

Delay,

Feedback

A more interesting system without inputs

Counter

NGTSO —> NGTSO

>

0,1,2,3,4,5, ..

State-machine implementation of Counter

Counter

NGTSO —> NGTSO

FusEmmanns > >

0,1,2,3,4,5, ..

where V n e Nats,,

inc(n) = n+1,

One run

Time O 1 2 3 4 5 6 7
Input
Output O 1 2 3 4 5 6 7

State O 12 3 4 5 6 7 8

Infinitely many states

(OO

Yet another system without inputs

ModCounter
SRR GRELLLLEELLLLE E NGTSO — NGTSO
» Delayg i . .
.................... 5 0123012 .
------ IncMod4 e

where V¥V n e Natsy, incMod4 (n) = (n+1) mod 4.

Transition diagram of ModCounter

IO (O (2

°/3

A discrete-time reactive system can have many
different state-machine implementations.

Two state machines M1 and M2 are equivalent
iff
they implement the same system (input/output function);
that is, iff
1. Inputs [M1] = Inputs [M2],
2. Outputs [M1] = Outputs [M2], and
3. V x e[Natsg— Inputs], M1(x)= M2 (x).

Y

e [Natsy — Outputs]

Equivalent State Machines

M1 1/0

0/1
0/0 1/1
M2 1/0

0/1

0/0 1/1

Equivalent State Machines

M1
-/ 0 - /1
2 states
M?2
-/ 0
1 state

Equivalent State Machines

M1 1/0

0/1

1/1

2 states

3 states

Theorem :
Two state machines M1 and M2 are equivalent
iff
there exists a bisimulation between M1 and M2 .

A binary relation B between States [M1] and States [M2] .
that is, B < States [M1] x States [M2].

A binary relation B ¢ States [M1] x States [M2] is a
bisimulation

iff
1. (initialState [M1], initialState [M2]) € B and
2. V p € States [M1], V q € States [M2],
if (p.q)eB,
then V x e Inputs [M1],
output [M1](p, x) = output [M2] (g, x) and
(nextState [M1] (p, x), nextState [M2](q,x)) € B.

Bisimulation B={(0,a),(1,b)}

Bisimulation B={(pg, q0)}

Bisimulation B ={(po.qi). (Po.90). (P1,91)}

Equivalence between state machines:

refers only to input and output signals.

Bisimulation between state machines:

refers to states.

Why is bisimulation useful ?

"Equivalence” says something about infinitely many
possible input signals.

For finite state machines, "bisimulation” says
something about finitely many possible relationships
between states.

Bisimulation, therefore, is easier to check than
equivalence.

