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The Safety Control Problem

Given

finite-state machine Plant

2. set Error of plant states




The Safety Control Problem

Find
finite-state machine Plant
Bt >
plant plant
input output
P finite-state machine P
Controller <€

such that the composite system never enters
a state in Error



Control is a Game : Plant vs. Controller

Each round consists of two moves:
first Controller chooses plant input,
then Plant chooses plant output

Controllable plant states : controller has a strategy
to meet the objective (avoid error states)

Uncontrollable plant states: plant has a strategy to
violate the objective (reach an error state)






Controller objective = SAFETY :

stay away from the states in the set Error

Plant objective = PROGRESS :

get to a state in the set Error



The dual control problem:
PROGRESS

controller attempts to lead the plant into a
specified set of states (the "target” states)



Safety Control vs. Progress Control

The roles of Plant and Controller are reversed.

But the progress-controllable states are not the
safety-uncontrollable, because the game is not
symmetric (the controller always moves first).

Still, the solutions are very similar.
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Recall Safety Control Step 1:
Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.
2. For all states s,

if for all inputs i
there exist a safety-uncontrollable
state s’ and an output o
such that (s',0) € possibleUpdates (s,i)

then s is safety-uncontrollable.



Progress Control Step 1:
Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.
2. For all states s,

if there exists an input i
for all states s’ and outputs o
if (s',0) € possibleUpdates (s,i)
then s’ is progress-controllable

then s is progress-controllable.
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progress-controllable (can force
plant into target in <2 transitions)
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Plant plant info target in <3 transitions)
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green: helpful inputs (ensure progress towards target)
blue:  safe inputs (keep plant out of uncontrollable states)



Recall Safety Control Step 2:

Track consistent set of safety-controllable plant states

1. A subset S ¢ Safety-controllable is consistent if there
is an input i such that for all states s € S, all states in
possibleUpdates (s,i) are safety-controllable.

2. Prune from the state machine whose states are the
consistent subsets of Safety-controllable and whose

outputs are safe the states without successors.

3. If the result contains possibleInitialStates (of the
plant) as a state, then it is the desired Controller.
Otherwise, no controller exists.




Track consistent set of progress-controllable plant states

Progress Control Step 2:

1.

A subset S c Progress-controllable is consistent if there is an
input i such that for all states s € S, all states in possibleUpdates
(s,i) are progress-controllable.

Construct the state machine whose states are the consistent
subsets of Progress-controllable without target states (including
the empty set @), and whose outputs are safe. A safe output is a
controller output (and so a plant input) which cannot lead the plant
to a progress-uncontrollable state (so safe outputs are blue and
green plant inputs).

If the result contains possibleInitialStates (of the plant) as a
state, and there is an acyclic, output-closed subgraph from
possibleInitialStates to &, then prune away all states not in the
subgraph; this is the desired Controller. Otherwise, no controller
exists. A subgraph is output-closed if transitions with safe but not
helpful outputs are removed.



As usual, if the plant is output-deterministic, then
we need consider only consistent sets of size 1.

(In other words, the controller always knows the
state of the plant.)



Output-deterministic |
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Acyclic, output-closed subgraph
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A Game Graph
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