Progress Control

EECS 20
Lecture 37 (April 25, 2001)

Tom Henzinger

Revised by Matteo Zavatteri and Tiziano Villa, Fall 2020

The Safety Control Problem

Given

finite-state machine Plant

2. set Error of plant states

The Safety Control Problem

Find
finite-state machine Plant
Bt >
plant plant
input output
P finite-state machine P
Controller <€

such that the composite system never enters
a state in Error

Control is a Game : Plant vs. Controller

Each round consists of two moves:
first Controller chooses plant input,
then Plant chooses plant output

Controllable plant states : controller has a strategy
to meet the objective (avoid error states)

Uncontrollable plant states: plant has a strategy to
violate the objective (reach an error state)

Controller objective = SAFETY :

stay away from the states in the set Error

Plant objective = PROGRESS :

get to a state in the set Error

The dual control problem:
PROGRESS

controller attempts to lead the plant into a
specified set of states (the "target” states)

Safety Control vs. Progress Control

The roles of Plant and Controller are reversed.

But the progress-controllable states are not the
safety-uncontrollable, because the game is not
symmetric (the controller always moves first).

Still, the solutions are very similar.

Plant

llllllllllllllllllllllllllllllllllllll
.
* .Q

progress-uncontrollable

Recall Safety Control Step 1:
Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.
2. For all states s,

if for all inputs i
there exist a safety-uncontrollable
state s’ and an output o
such that (s',0) € possibleUpdates (s,i)

then s is safety-uncontrollable.

Progress Control Step 1:
Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.
2. For all states s,

if there exists an input i
for all states s’ and outputs o
if (s',0) € possibleUpdates (s,i)
then s’ is progress-controllable

then s is progress-controllable.

lllllllllllllllllll
0‘ .0

1/0 0/0 0/1 i Target

O 0/1 O O
) 1/1 OUOE

/1 9/0 1/0 |99 o |0

A 1/0

progress-controllable (can force “.ns g
plant into target in 1 transition)

progress-controllable (can force
plant into target in <2 transitions)

(1% 0/0 \ 0/1 { Target
/ ‘ ;?\1/0

0/1 1/1

1/1 0/0 1/0 %3 20/1 /0

L *

progress-controllable (can force

Plant plant info target in <3 transitions)
1/0 0/0 0/ { Target |
_)C'\ 0/1 /1 \1/05
) :
R
1/1 0/0 YO 91 Aon |i/0

L *

progress-controllable (can force

Plant plant into target in <4 fransitions)
1/0 0/0 0/ { Target |
0/1 /1 \1/05
S e
1/1 0/0 YO 91 Aon |i/0

L *

lllllllllllllllllllllllllllllllllllll
*

é(oA 1/ é
o1 S o 1
11 (N (N

0/1 /0

L *

....
--

green: helpful inputs (ensure progress towards target)
blue: safe inputs (keep plant out of uncontrollable states)

Recall Safety Control Step 2:

Track consistent set of safety-controllable plant states

1. A subset S ¢ Safety-controllable is consistent if there
is an input i such that for all states s € S, all states in
possibleUpdates (s,i) are safety-controllable.

2. Prune from the state machine whose states are the
consistent subsets of Safety-controllable and whose

outputs are safe the states without successors.

3. If the result contains possibleInitialStates (of the
plant) as a state, then it is the desired Controller.
Otherwise, no controller exists.

Track consistent set of progress-controllable plant states

Progress Control Step 2:

1.

A subset S c Progress-controllable is consistent if there is an
input i such that for all states s € S, all states in possibleUpdates
(s,i) are progress-controllable.

Construct the state machine whose states are the consistent
subsets of Progress-controllable without target states (including
the empty set @), and whose outputs are safe. A safe output is a
controller output (and so a plant input) which cannot lead the plant
to a progress-uncontrollable state (so safe outputs are blue and
green plant inputs).

If the result contains possibleInitialStates (of the plant) as a
state, and there is an acyclic, output-closed subgraph from
possibleInitialStates to &, then prune away all states not in the
subgraph; this is the desired Controller. Otherwise, no controller
exists. A subgraph is output-closed if transitions with safe but not
helpful outputs are removed.

As usual, if the plant is output-deterministic, then
we need consider only consistent sets of size 1.

(In other words, the controller always knows the
state of the plant.)

Output-deterministic |

1 571 o

Safe outputs

Acyclic, output-closed subgraph

1 571 o

Pruned

1 571 0
~.progress-uncontrollable’ RPN :

Controller

A Game Graph

© @

green: turn-1/ -

green: turn-1/ -
blue: turn-2-adjacent / -

green: turn-1/ -

blue: turn-2-adjacent / -
red: turn-2-diagonal / -

OO

los

véa

green: turn-1/ -
blue: turn-2-adjacent / -
red: turn-2-diagonal / -

IIIIIIIIIIIIIIIIIIIIIIIIIIIII
*

.
--

green: turn-1/ -
blue: turn-2-adjacent / -

red: turn-2-diagonal / - progress-controllable

green: turn-1/ -
blue: turn-2-adjacent / -

red: turn-2-diagonal / - /

progress-controllable

green: turn-1/ -
blue: turn-2-adjacent / -

red: turn-2-diagonal / - progress-controllable

\Um

* *

.
--

green: turn-1/ -
blue: turn-2-adjacent / -

red: turn-2-diagonal / - progress-controllable

* *

.
--

green: turn-1/ -
blue: turn-2-adjacent / -
red: turn-2-diagonal / -

All states are
progress-controllable.

green: turn-1/ -
blue: turn-2-adjacent / -
red: turn-2-diagonal / -

All states are
progress-controllable.

.......................... S \J

All inputs ’r @ . All subsets are

are safe. consistent.

.

Determinization

Determinization

CarsD)
Cors >

Determinization

&0

Determinization

Determinization

Determinization

Determinization

fods

)

Determinization

fods

\
g

Controller

