Systems Design Laboratory

Traffic Lights

Matteo Zavatteri

${ }^{1}$ Department of Mathematics, University of Padova, ITALY
${ }^{2}$ Department of Computer Science, University of Verona, ITALY

General Context

Main components:

- Two Red-Green Traffic Lights.
- A yellow car stream
- A blue car stream

Traffic Lights

Each traffic light operates in two possible ways:

- Red Light
- Green Light

Yellow Car Stream

Left/gone

Bridge

Right

- A stream of single yellow cars going left to right
- When a car has green light, it can enter the bridge
- Once entered the bridge, the car can exit
- Once exited the bridge, the car can proceed disappearing from the right road segment with a new one appearing on the left
- Beside traffic light synchronization, there is no control on the entering/exiting the bridge of a car

Blue Car Stream

- A stream of single blue cars going right to left
- When a car has green light, it can enter the bridge
- Once entered the bridge, the car can exit
- Once exited the bridge, the car can proceed disappearing from the left road segment with a new one appearing on the right
- Beside traffic light synchronization, there is no control on the entering/exiting the bridge of a car

Traffic Light Automata

- States?
- Transitions?
- Event Controllability?

Traffic Light Automata

Automaton for Traffic Light 1
Automaton for Traffic Light 2

States:

- $R_{1}=$ Traffic Light 1 is red
- $G_{1}=$ Traffic Light 1 is green

Events:

- green $_{1}=$ Traffic Light 1 turns green
- red $_{1}=$ Traffic Light 1 turns red

States:

- $R_{2}=$ Traffic Light 2 is red
- $G_{2}=$ Traffic Light 2 is green

Events:

- green $_{2}=$ Traffic Light 2 turns green
- red $_{2}=$ Traffic Light 2 turns red

Stream of Cars Automata

- States?
- Transitions?
- Event controllability?

Car Stream Automata

Automaton for Yellow Car Stream

- $Y_{L}:$ Yellow car is on the left
- Y_{B} : Yellow car is on the bridge
- Y_{R} : Yellow car is on the right
- R_{1} / G_{1} : Traffic Light 1 is red/green

Automaton for Blue Car Stream

- B_{L} : Blue car is on the left
- B_{B} : Blue car is on the bridge
- B_{R} : Blue car is on the right
- R_{2} / G_{2} : Traffic Light 2 is red/green

Conceptually the states are pairs (Car Position, Traffic Light Status)

Yellow Car Stream Usecase Example

Traffic Light 1 is red. Yellow car can't enter the bridge

Blue Car Stream Usecase Example

Requirement 1

Requirement 1: Traffic Lights must not be simultaneously green

- States?
- Transitions?
- Event controllability?
(Recall that once a vehicle has green light, we can't prevent it from entering the bridge)

Requirement 1 - Attempt 1

Requirement 1: Traffic Lights must not be simultaneously green

Step 1:
Traffic Light 1 || Traffic Light 2

Requirement 1 - Attempt 1

Requirement 1: Traffic Lights must not be simultaneously green

Step 2
Remove the state $\left\{G_{1}, G_{2}\right\}$

Requirement 1 - Attempt 1

Requirement 1: Traffic Lights must not be simultaneously green

Correct requirement.
Can we avoid starting from
Traffic Light 1 || Traffic Light 2?

Requirement 1 - Attempt 2

Requirement 1: Traffic Lights must not be simultaneously green

1A) Traffic Light 1 can turn green only if Traffic Light 2 is red

1B) Traffic Light 2 can turn green only if Traffic Light 1 is red

Requirement 1 - Attempt 2 - Decomposition

Requirement 1: Traffic Lights must not be simultaneously green

1A) Traffic Light 1 can turn green only if Traffic Light 2 is red green $_{1}$

1B) Traffic Light 2 can turn green only if Traffic Light 1 is red green $_{2}$

Automata for R_{1} - Summary of Equivalent Versions

Version

Homework: check if the parallel composition of the two automata in Version 2 results in the automaton of Version 1.

Problem

Yet, car crashes are not completely avoided even if both traffic lights are prevented from turning simultaneously green

Can you spot the problem?

An Unforeseen Scenario

Requirement 2

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

Traffic Light 2 cannot turn green

Traffic Light 2 can turn green
(Blue car)

Traffic Light 1 cannot turn green

Traffic Light 1 can turn green

Requirement 2

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

Requirement 2

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

2A) Traffic Light 2 can turn green only if there is no yellow car on the bridge

2B) Traffic Light 1 can turn green only if there is no blue car on the bridge

Requirement 2 - Decomposition

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

2A) Traffic Light 2 can turn green only if there is no yellow car on the bridge

2B) Traffic Light 1 can turn green only if there is no blue car on the bridge

Requirement 2

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

Question: Does R_{2} in isolation guarantees to avoid car crashes?

Is R_{2} enough to avoid car crashed?

Requirement 2: A Traffic Light can turn green only if there is no car on the bridge coming from the opposite direction

Question: Does R_{2} in isolation guarantees to avoid car crashes?

$G \\| R_{2}$	Description	
	Traffic Light 1 turns green	
	Traffic Light 2 turns green	
	Bellow car enters the bridge	
		Blue car enters the bridge

No! Since R_{1} does not hold, we can turn green both traffic lights before having cars on the bridge (and the problem is still there).

Alternative to Requirements 1 and 2: Right or wrong?

Instead of having R_{1} and R_{2}. Consider this requirement.

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Does this requirement have the same effect on the plant of requirements 1 and 2 together?

Requirements $R_{1,2}^{\prime}$ - Attempt 1

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Such a requirement should:

- no longer be designed from copies of traffic lights
- reasonably be designed from the combinations of car positions

Requirements $R_{1,2}^{\prime}$ - Attempt 1

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Step 1: Compute the parallel composition of the car stream automata. Mark all states.

$6 \times 6=36$ states, 132 transitions. Why so big? What kind of composition is it?

Requirements $R_{1,2}^{\prime}$ - Attempt 1

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Step 2: Find all states where a yellow and a blue car are on the bridge together.

Clearly 4 states. Why?

Alternative to Requirements 1 and 2: Right or wrong?

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Step 3: Remove those illegal states.

Final requirement: $\mathbf{3 2}$ states, 112 transitions.

Alternative to Requirements 1 and 2: Right or wrong?

Question: $G\left\|R_{1}\right\| R_{2} \equiv G \| R_{1,2}^{\prime}$?

$G\left\\|R_{1}\right\\| R_{2}$	$G \\| R_{1,2}^{\prime}$	Description
		Traffic Light 1 turns green
		Yellow car enters the bridge
		Traffic Light 1 turns red
		Yellow car exits the bridge
		Traffic Light 2 turns green
		Blue car enters the bridge
		Blue car exits the bridge
Disabled by R_{1}		Traffic Light 1 turns green

Wrong! $G\left\|R_{1}\right\| R_{2} \not \equiv G \| R_{1,2}^{\prime}$. The problem is that R_{1} does not hold in $R_{1,2}^{\prime}$.
Homework: find other usecases (i.e., executions, traces) violating R_{1}.

Essentiality of $R_{1,2}^{\prime}$

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Usecase 1	Usecase 2	Usecase 3	Usecase 4

Can we simplify it?

Requirement $R_{1,2}^{\prime}$ - Attempt 2

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Usecase 1	Usecase 2	Usecase 3	Usecase 4	
\square	$\square 5$	\square	\square	\square

Requirement $R_{1,2}^{\prime}$ - Attempt 2

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Usecase 1	Usecase 2	Usecase 3	Usecase 4	
\square	\square	\square	\square	\square

Requirement $R_{1,2}^{\prime}$ - Attempt 2

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Usecase 1	Usecase 2	Usecase 3	Usecase 4

Correct. Can we avoid starting
from the concurrent behavior of "on/off bridge" automata?

Requirement $R_{1,2}^{\prime}$ - Attempt 3 - Decomposition

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

$R_{1,2}^{\prime} A$) A yellow car can enter the bridge only if there is no blue car on it
$\left.R_{1,2}^{\prime} B\right)$ A blue car can enter the bridge only if there is no yellow car on it

Requirement $R_{1,2}^{\prime}$ - Attempt 3

Requirement $R_{1,2}^{\prime}$: There are never a yellow car and a blue car on the bridge simultaneously.

Usecase 1	Usecase 2	Usecase 3	Usecase 4

$\left.R_{1,2}^{\prime} A\right)$ A yellow car can enter the bridge only if there is no blue car on it

$\left.R_{1,2}^{\prime} B\right)$ A blue car can enter the bridge only if there is no yellow car on it

Automata for $R_{1,2}^{\prime}$ - Summary of Equivalent Versions

Version	Automaton	Modeling Intuition	
Version 1		From a modified copy of YellowCarStream \|	BlueCarStream
Version 2		From a modification of "On/Off bridge" automaton for yellow and blue cars (concurrent)	
Version 3		From a modification of "On/Off bridge" automaton for yellow and blue cars (in isolation)	

Homework: note the modeling similarities of $R_{1,2}^{\prime}$ (version 2) with R_{1} (version 1);
of $R_{1,2}^{\prime}$ (version 3) with R_{1} (version 2) and R_{2}.

Requirement 3

Requirement 3: Green Lights must alternate.

If Traffic Light 1 turns green first

\Downarrow
If Traffic Light 2 turns green first

\Downarrow

Requirement 3 - Attempt 1

Requirement 3: Green Lights must alternate.

If Traffic Light 1 turns green first

$$
\Downarrow
$$

Requirement $R_{3 A}$

If Traffic Light 2 turns green first

$$
\Downarrow
$$

Requirement $R_{3 B}$

Not certaintly an AND of the two automata. We need the UNION of these two automata.

Requirement 3 - Attempt 1 - Nondeterministic

Requirement 3: Green Lights must alternate.

If Traffic Light 1 turns green first

If Traffic Light 2 turns green first

Requirement $R_{3 A}$ Requirement $R_{3 B}$

Homework: synthesize a supervisor that (also) takes into consideration requirement $R_{3 A} \wedge R_{3 B}$. What effect does it have on the plant?

Requirement 3 - Attempt 1 - Nondeterministic

Requirement 3: Green Lights must alternate.

If Traffic Light 1 turns green first

\Downarrow

NFA

If Traffic Light 2 turns green first


```
\Downarrow
```

...

DFA

Requirement 3 - Attempt 2 - Deterministic

Requirement 3: Green Lights must alternate.

3A) If Traffic Light 1 turns green, then Traffic Light 2 must turn green at least once before Traffic Light 1 turns green again.

3B) Whenever Traffic Light 2 turns green, then Traffic Light 1 must turn green at least once before Traffic Light 2 turns green again.

If Traffic Light $i=1,2$ turns green, then Traffic Light (i mod 2) +1 must turn green at least once before Traffic Light i turns green again.

Requirement 3 - Attempt 2 - Deterministic

Requirement 3: Green Lights must alternate.

$$
\Downarrow
$$

3A) If Traffic Light 1 turns green, then Traffic Light 2 must turn green at least once before Traffic Light 1 turns green again.

3B) Whenever Traffic Light 2 turns green, then Traffic Light 1 must turn green at least once before Traffic Light

2 turns green again.

If Traffic Light $i=1,2$ turns green, then Traffic Light $(i \bmod 2)+1$ must turn green at least once before Traffic Light i turns green again.

Requirement 3 - Attempt 3 - Deterministic

Requirement 3: Green Lights must alternate.

1 automaton only? (3 states)

Requirement 3 - Attempt 3 - Deterministic

Requirement 3: Green Lights must alternate.

Requirement 4

Requirement 4: Whenever Traffic Light 1 turns green, then 2 to 4 yellow cars traverse (i.e., exit) the bridge before Traffic Light 1 turns red again

Traffic Light 1 cannot turn red

Traffic Light 1 can turn red

Traffic Light 1 can turn red

Traffic Light 1 must turn red

What about the automaton?

Requirement 4

Requirement 4: Whenever Traffic Light 1 turns green, then 2 to 4 yellow cars traverse (i.e., exit) the bridge before Traffic Light 1 turns red again

Requirement 5

Requirement 5: Whenever Traffic Light 2 turns green, then 1 to 3 blue cars traverse (i.e., exit) the bridge before Traffic Light 2 turns red again

Traffic Light 2 can turn red

Traffic Light 2 can turn red
3rd car

Traffic Light 2 must turn red

What about this automaton?

Requirement 5

Requirement 5: If Traffic Light 2 turns green, then $\mathbf{1}$ to $\mathbf{3}$ blue cars traverse (i.e., exit) the bridge before Traffic Light 2 turns red again

