Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione per ogni domanda; per annullare una risposta ritenuta errata racchiuderla in un cerchio. Non si richiede la giustificazione della risposta data. Risposta esatta: 1.5 punti; risposta sbagliata: -0.25 punti; risposta non data: 0 punti.

**Test 1:** Sia $z = 1 - 2i$. Allora esprimere in forma algebrica il seguente numero complesso $(\bar{z})^2 + i\bar{z} + 3 = \frac{z + |z|^2i}{z + |z|^2i}$

(A) $-17 + 11i$ 
(B) $13 - i$ 
(C) $13 + 11i$ 
(D) $17 - i$

**Test 2:**

\[
\int \frac{1}{x} \log \log x \, dx =
\]

(il logaritmo si intende in base $e$)

(A) $\frac{1}{2} \log^2(\log x) + C$ 
(B) $\log(\log(\log x)) + C$ 
(C) $\log x(\log \log x) - \log x + C$ 
(D) $\log \log x - 1 + C$

**Test 3:** Sia $x_0$ il punto di massimo per la funzione $f(x) = \arctan \sqrt{x} - \log(1 + x)$ sull’intervallo $[0, e^2 - 1]$ e $y_0 = f(x_0)$. Allora $2y_0$ vale?

(A) $1$ 
(B) $\frac{1}{2}$ 
(C) $\frac{1}{4}$ 
(D) $2$

**Test 4:** Il polinomio di Mac Laurin di ordine 4 della funzione $(\sin(3x))^2 - 4\log(1 + x^2)$ vale?

(A) $5x^2 + 29x^4$ 
(B) $5x^2 - 25x^4$ 
(C) $13x^2 - 25x^4$ 
(D) $13x^2 + 29x^4$

**Test 5:** Il limite

\[
\lim_{n \to +\infty} \left( \frac{n}{2n + \pi} + \frac{\sin(n^2 + 1)}{n^\pi} + \frac{1}{2} \sqrt{2 + \frac{1}{n}} \right)
\]

valle?

(A) $0$ 
(B) $1$ 
(C) $2$ 
(D) $+\infty$

**Test 6:** Sia data la funzione $f(x) = \frac{\log(1 + \cos^2(3x))}{1 + e^{x^4 - 1}}$

Allora $f'(\pi/6) =$?

(A) $-6$ 
(B) $\frac{1}{1 + e^{(\pi/6)^4 - 1}}$ 
(C) $-1$ 
(D) $0$
Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) — 10.02.2012

Soluzione dei test:

Test 1:
Si ha
\[ \bar{z} = 1 + 2i \quad \bar{z} = 1 + 2i \quad (\bar{z})^2 = 1 + 4i - 4 = -3 + 4i \quad i\bar{z} = i(1 - 2i) = i + 2 \]
da cui
\[ \frac{(\bar{z})^2 + iz + 3}{z + |z|^2} = \frac{-3 + 4i + i + 2 + 3}{1 + 2i + 5i} = \frac{2 - 6i + 5i}{1 + 3i + 1 - 3i} = \frac{17 - i}{10} \]
quindi la risposta corretta è la (D).

Test 2:
Proviamo ad operare la seguente sostituzione
\[ \log x = t \quad x = e^t \quad dx = e^t dt \]
da cui
\[ \int \frac{1}{x} \log(x) dx = \int \frac{1}{e^t} \log(e^t) dt = \int \log t dt = t \log t - t + C = (\log x)(\log(\log x)) - \log x + C \]
quindi la risposta corretta è la (C) (N.B. è chiaro che derivando le quattro espressioni delle risposte si ottiene sicuramente quella che è la classe di primitive richieste).

Test 3:
La funzione data è continua e derivabile su \( \mathbb{R}^+ \) con derivata
\[ f'(x) = \frac{1}{2\sqrt{x}(1 + x)} - \frac{1}{1 + x} = \frac{1 - 2\sqrt{x}}{2(1 + x)^{3/2}} \]
che si annulla per \( x = 1/4 \). Valutando il segno della derivata prima si ottiene che la funzione prima cresce e poi decresce, perciò \( x_0 = 1/4 \) è il punto di massimo nell’intervalllo richiesto. Quindi siccome viene richiesto il valore \( 2x_0 \) si ha che la risposta corretta è la (B).

Test 4:
Usando gli sviluppi di Mac Laurin delle funzioni seno e logaritmo si ha che
\[ (\sin(3x))^2 = \left(3x - \frac{(3x)^3}{6} + o(x^3)\right)^2 = 9x^2 - 27x^4 + o(x^4) \]
mentre
\[ \log(1 + x^2) = x^2 - \frac{x^4}{2} + o(x^4) \]
da cui
\[ (\sin(3x))^2 - 4\log(1 + x^2) = 9x^2 - 27x^4 - 4x^2 + 2x^4 + o(x^4) = 5x^2 - 25x^4 + o(x^4) \]
La risposta corretta è pertanto la (B).

Test 5:
Supponendo che non ci siano forme di indecisione, svolgiamo i tre limiti separatamente. Dalla gerarchia degli infiniti si ha
\[ \lim_{n \to +\infty} \frac{n}{2n + \pi} = \frac{1}{2} \]
ievece dal teorema del confronto si ha
\[ \lim_{n \to +\infty} \frac{\sin(n^2 + 1)}{n^2} = 0. \]
Infine
\[ \lim_{n \to +\infty} \sqrt[1/n]{2 + \frac{1}{n}} = \lim_{n \to +\infty} \left(2 + \frac{1}{n}\right)^{1/n} = \lim_{n \to +\infty} \exp \left(\frac{1}{n} \log \left(2 + \frac{1}{n}\right)\right) = 1 \]
perché
\[ \lim_{n \to +\infty} \log \left(2 + \frac{1}{n}\right) = \log 2. \]
Quindi la risposta corretta è la (B).

Test 6:
Applicando la formula della derivata del quoziente di funzioni e della derivata della funzione composta si ha che

$$f'(x) = \left(\frac{1}{\cos^2(3x)} \right) \left(2 \cos(3x)(-\sin(3x))3 \right)(1 + e^{x-1}) - 4x^3(e^{x-1}) \log(1 + \cos^2(3x))$$

da cui in modo evidente si ottiene $f'(\pi/6) = 0$, quindi la risposta corretta è la (D).
Esercizio (4 punti)

Si calcoli\[\lim_{x \to 0^+} \frac{1}{(\cos(2x) - 1)^2} \int_0^{e^{2x-1}} \log(1 + t^3) \, dt\]

Primo modo: Proviamo a calcolare la primitiva della funzione \(\log(1 + t^3)\). Integrando per parti si ha\[\int \log(1 + t^3) \, dt = t \log(1 + t^3) - \int \frac{3t^2}{1 + t^3} \, dt = t \log(1 + t^3) - 3t + 3 \int \frac{1}{1 + t^3} \, dt\]

A questo punto
\[\int \frac{3}{1 + t^3} \, dt = \int \frac{1}{1 + t} \, dt + \int \frac{-t + 2}{t^2 - t + 1} \, dt = \log|1 + t| - \frac{1}{2} \int \frac{2t - 1}{1 + t^2 - t} \, dt + \frac{3}{2} \int \frac{1}{(t - 1/2)^2 + 3/4} \, dt\]
dai cui
\[\int_0^{e^{2x-1}} \log(1 + t^3) \, dt = (e^{2x} - 1) \log(1 + (e^{2x} - 1)^3) - 3(e^{2x} - 1) \log(1 + (e^{2x} - 1)^3) - \frac{1}{2} \log(1 + (e^{2x} - 1)^3 - (e^{2x} - 1)) + \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}}(e^{2x} - 1) - \frac{1}{\sqrt{3}}\right) + \sqrt{3} \arctan(1/\sqrt{3}).\]

Analizziamo i vari termini separatamente attraverso gli sviluppi di Mac Laurin. Possiamo considerare come se avessimo \(2x\) al posto di \(e^{2x} - 1\) (andrebbe dimostrato rigorosamente!). Quindi è come se dovessimo lavorare con
\[2x \log(1 + (2x^3) - 6x + \log(1 + 2x) - \frac{1}{2} \log(1 + 4x^2 - 2x) + \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}}(2x - 1)\right) + \sqrt{3} \arctan(1/\sqrt{3})\]

A questo punto, fermandoci fino al quarto ordine si ottiene
\[2x \log(1 + (2x^3) - 16x^4) \log(1 + 2x) \sim 2x - \frac{(2x)^2}{2} + \frac{(2x)^3}{3} - \frac{(2x)^4}{4} = 2x - 2x^2 + \frac{4}{3} x^3 - 2x^4\]

D’altra parte
\[-\frac{1}{2} \log(1 + 4x^2 - 2x) = -\frac{1}{2} \left[ (4x^2 - 2x) - \frac{1}{2} (4x^2 - 2x)^2 + \frac{1}{3} (4x^2 - 2x)^3 - \frac{1}{4} (4x^2 - 2x)^4 \right] = x - x^2 - 4x^3 + \frac{4}{3} x^3 - 2x^4 + o(x^4)\]

Infine ponendo
\[f(x) = \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}}(2x - 1)\right) + \sqrt{3} \arctan(1/\sqrt{3})\]
si riesce a dimostrare che
\[f(0) = 0, \quad f'(0) = 3 \quad f''(0) = 6 \quad f'''(0) = 0 \quad f^{iv}(0) = -144\]

Quindi, scrivendo lo sviluppo di Taylor di \(f\) centrato in 0 si ha
\[f(x) = f(0) + f'(0)x + \frac{1}{2} f''(0)x^2 + \frac{1}{3!} f'''(0)x^3 + \frac{1}{4!} f^{iv}(0)x^4 + o(x^4) = 3x + 3x^2 - 6x^4 + o(x^4)\]

A questo punto allora
\[2x \log(1 + (2x^3) - 6x + \log(1 + 2x) - \frac{1}{2} \log(1 + 4x^2 - 2x) + \sqrt{3} \arctan\left(\frac{2}{\sqrt{3}}(2x - 1)\right) + \sqrt{3} \arctan(1/\sqrt{3}) = 16x^4 - 6x + 2x^2 + 83 x^3 - 4x^4 + x - x^2 - 4x^3 + \frac{4}{3} x^3 - 2x^4 + 3x + 3x^2 - 6x^4 + o(x^4)\]

quindi ricordando che per \(x \to 0^+\) si ha
\[(\cos(2x) - 1)^2 = \left(\frac{(2x)^2}{2} + o(x^2)\right)^2 = 4x^4 + o(x^4)\]

il limite proposto diventa
\[\lim_{x \to 0^+} \frac{4x^4 + o(x^4)}{x^4 + o(x^4)} = 1.\]
Secondo modo: Si tratta di una forma di indecisione $\left[ \frac{0}{0} \right]$. Proviamo ad applicare il teorema di de l’Hospital. Usando il secondo teorema fondamentale del calcolo integrale si ottiene

$$
\lim_{x \to 0^+} \frac{1}{(\cos(2x) - 1)^2} \int_0^{e^{2x} - 1} \log(1 + t^3) \, dt \overset{H}{=} \lim_{x \to 0^+} \frac{\log(1 + (e^{2x} - 1)^3)e^{2x}2}{2(\cos(2x) - 1)(-\sin(2x))^2}
$$

A questo punto dai limiti notevoli, per $x \to 0^+$ si ottiene

$$
\log(1 + (e^{2x} - 1)^3) \sim (e^{2x} - 1)^3 - (2x)^3 = 8x^3
$$

mentre

$$(\cos(2x) - 1)(-\sin(2x)) \sim \frac{(2x)^2}{2}(-2x) \sim 4x^3$$

da cui

$$
\lim_{x \to 0^+} \frac{\log(1 + (e^{2x} - 1)^3)e^{2x}2}{2(\cos(2x) - 1)(-\sin(2x))^2} = \lim_{x \to 0^+} \frac{16x^3e^{2x}}{16x^3} = 1.
$$

Si noti come questo secondo modo sia molto più agevole del primo.

**Esercizio (4 punti)** Per quali valori di $\alpha \in \mathbb{R}$ risulta convergente la seguente serie numerica?

$$
\sum_{n=1}^{\infty} \frac{n^{\alpha} \tan \frac{1}{n}}{5n^2 + n^5 \sqrt{n} \sin \frac{1}{n^3 \sqrt{n}}}
$$

Si tratta senza dubbio di una serie a termini non negativi. Dai limiti notevoli si ottiene che, per $n \to \infty$

$$
\tan \frac{1}{n^2} \sim \frac{1}{n^2} \quad n^5 \sqrt{n} \sin \frac{1}{n^3 \sqrt{n}} \sim n^5 \sqrt{n} \frac{1}{n^3 \sqrt{n}} = n^2
$$

quindi dal criterio del confronto asintotico la serie data si comporta come la serie

$$
\sum_{n=1}^{\infty} \frac{n^\alpha}{n^\beta(5n^2 + n^2)} = \frac{1}{6} \sum_{n=1}^{\infty} \frac{1}{n^{4-\alpha}}
$$

che è una serie armonica generalizzata di esponente $\gamma = 4 - \alpha$ e dunque converge se $\gamma > 1$ cioè se $4 - \alpha > 1$ ossia $\alpha < 3$. 
Si studi la seguente funzione

\[ f(x) = \frac{|x - e|}{ex + 2} \]

Si ha

\[ f(x) = \begin{cases} \frac{x - e}{ex + 2} = g(x) & x \geq e \\ \frac{e - x}{ex + 2} = h(x) & x < e \end{cases} \]

Il dominio della funzione assegnata è \( x \neq -2/e \). Il numeratore è sempre positivo per la definizione di valore assoluto, il denominatore è positivo per \( x > -2/e \), negativo altrimenti. Quindi \( f(x) > 0 \) per \( x > -2/e \), \( f(x) < 0 \) altrimenti. I punti di intersezione con gli assi sono \((e, 0)\) e \((0, e/2)\).

La retta \( x = -2/e \) è un asintoto verticale per la funzione assegnata, infatti

\[ \lim_{x \to -2/e^+} f(x) = \lim_{x \to -2/e^-} h(x) = -\infty, \]

\[ \lim_{x \to -2/e^+} f(x) = \lim_{x \to -2/e^-} h(x) = +\infty, \]

inoltre

\[ \lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \frac{x}{ex + 2} = \lim_{x \to +\infty} \frac{e}{e^2 + 2} \cdot \lim_{x \to +\infty} \frac{1}{e + 2/x} = \frac{1}{e}, \]

mentre

\[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} -g(x) = -\frac{1}{e}. \]

La derivata prima di \( f(x) \) esiste per \( x \neq e \) ed è

\[ f'(x) = \begin{cases} \frac{ex + 2 - e(x - e)}{(ex + 2)^2} = \frac{2 + e^2}{(ex + 2)^2} & \text{se } x > e \\ \frac{2 + e^2}{(ex + 2)^2} & \text{se } x < e, \end{cases} \]

Si vede quindi chiaramente che \( f'(x) > 0 \) per \( x > e \), \( f'(x) < 0 \) altrimenti, quindi la funzione è decrescente per \( x < e \) e crescente per \( x > e \). La derivata seconda, sempre per \( x \neq e \), è

\[ f''(x) = \begin{cases} \frac{2(2 + e^2)}{(ex + 2)^3} & \text{se } x > e \\ \frac{2(2 + e^2)}{(ex + 2)^3} & \text{se } x < e, \end{cases} \]

quindi, se \( x > e \), \( f''(x) < 0 \) e, di conseguenza, la funzione è concava. Passiamo a studiare il caso \( x < e \) dividendo l'analisi nei due casi \(-2/e < x < e \) e \( x < -2/e \). In entrambi i casi il numeratore positivo, ma se \(-2/e < x < e \) il denominatore positivo, quindi \( f''(x) > 0 \). Se invece \( x < -2/e \), allora il denominatore è negativo, quindi \( f''(x) < 0 \). Riassumendo quindi la funzione è convessa per \(-2/e < x < e \) e concava per \( x < -2/e \) e \( x > e \). In figura 1 riportiamo il grafico di tale funzione.
Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) — 10.02.2012

Tema: (5 punti)
Si esponga quanto si sa circa il concetto di limite per funzioni di una variabile, partendo dalla definizione di limite finito o infinito, distinguendo anche i casi in cui la variabile indipendente tende a un valore finito/infinito.

Sia \( I \) intervallo e sia \( c \in I \), con \( f : I \to \mathbb{R} \) tranne al più il punto \( c \); l’intervallo \( I \) può essere limitato o illimitato, aperto o chiuso e \( c \) può anche eventualmente essere \( \pm \infty \).

Consideriamo una successione \( x_n \in I \) con \( x_n \neq c \) e \( x_n \to c \) per \( n \to \infty \); poi consideriamo la successione delle immagini \( f(x_n) \).

**Definizione successionale di limite** Si dice che
\[
\lim_{x \to c} f(x) = \ell \quad c, \ell \in \mathbb{R}^*
\]
se
\[
\forall \{x_n\} \neq c, \ x_n \to c \Rightarrow f(x_n) \to \ell \quad \text{per} \ n \to \infty.
\]

Si dice **intorno** di un punto \( x_0 \in \mathbb{R} \) un intervallo aperto che contiene \( x_0 \), cioè è un intervallo del tipo \( (x_0 - \delta, x_0 + \delta) \) per qualche \( \delta > 0 \). Un intorno di \( +\infty \) è un intervallo del tipo \( (a, +\infty) \); un intorno di \( -\infty \) è un intervallo del tipo \( (-\infty, b) \).

Diciamo che una funzione \( f(x) \) possiede una certa proprietà DEFINITIVAMENTE per \( x \to c \) se esiste un intorno \( U \) di \( c \) tale che la proprietà vale per \( f(x) \) per ogni \( x \in U \), \( x \neq c \).

**Definizione topologica di limite** Sia \( c \in \mathbb{R}^* \) e sia \( f \) una funzione definita almeno definitivamente per \( x \to c \). Si dice che
\[
\lim_{x \to c} f(x) = \ell \quad \ell \in \mathbb{R}^*
\]
se
\[
\forall U_{\ell} \text{ intorno di } \ell \exists V_c \text{ intorno di } c \text{ tale che } \forall x \in V_c, x \neq c, f(x) \in U_{\ell}.
\]

Distinguiamo ora quattro casi in cui alternativamente \( c \) e \( \ell \) sono finiti o infiniti e andiamo a caratterizzare le corrispondenti proprietà.

**Limite finito all’infinito**

In questo caso
\[
\lim_{x \to c} f(x) = \ell
\]

si scrive nel dettaglio:
se \( c = +\infty \) e \( \ell \in \mathbb{R} \)

\[
\forall \varepsilon > 0 \exists K > 0 : \forall x, x > K \Rightarrow |f(x) - \ell| < \varepsilon
\]

se \( c = -\infty \) e \( \ell \in \mathbb{R} \)

\[
\forall \varepsilon > 0 \exists K > 0 : \forall x, x < -K \Rightarrow |f(x) - \ell| < \varepsilon.
\]

Ad esempio:

\[
\lim_{x \to +\infty} e^x = 0^+ \quad \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}.
\]

In questo caso si dice che \( f \) ha un **asintoto orizzontale** cioè una retta di equazione \( y = \ell \) con \( \ell \in \mathbb{R} \) tale che per \( x \to +\infty \) oppure per \( x \to -\infty \) si abbia

\[
\lim_{x \to +\infty} f(x) = \ell \quad \text{rispettivamente} \quad \lim_{x \to -\infty} f(x) = \ell.
\]

Quindi ogni situazione di limite finito all’infinito corrisponde graficamente a un asintoto orizzontale.

**Limite infinito all’infinito**

In questo caso

\[
\lim_{x \to +\infty} f(x) = \ell
\]

si scrive nel dettaglio:

se \( c = +\infty \) e \( \ell = +\infty \)

\[
\forall H > 0 \exists K > 0 : \forall x, x > K \Rightarrow f(x) > H;
\]

se \( c = +\infty \) e \( \ell = -\infty \)

\[
\forall H > 0 \exists K > 0 : \forall x, x > K \Rightarrow f(x) < -H;
\]

se \( c = -\infty \) e \( \ell = +\infty \)

\[
\forall H > 0 \exists K > 0 : \forall x, x < -K \Rightarrow f(x) > H;
\]

se \( c = -\infty \) e \( \ell = -\infty \)

\[
\forall H > 0 \exists K > 0 : \forall x, x < -K \Rightarrow f(x) < -H.
\]

Ad esempio:

\[
\lim_{x \to +\infty} e^x = +\infty \quad \lim_{x \to +\infty} \sin x + x^2 = +\infty.
\]

Nei casi in cui una funzione presenta limite infinito all’infinito può accadere (ma non detto!) che esista una retta obliqua a cui la funzione si avvicina indefinitamente. Tale retta si chiama **asintoto obliquo**. Precisamente:

Si dice che una funzione \( f(x) \) ha **asintoto obliquo** \( y = mx + q \) (con \( m \neq 0, q \in \mathbb{R} \)) per \( x \to +\infty \) (oppure \( x \to -\infty \)) se accade che

\[
\lim_{x \to +\infty} [f(x) - mx - q] = 0 \quad \text{oppure rispettivamente} \quad \lim_{x \to -\infty} [f(x) - mx - q] = 0.
\]

Vale la seguente: **Proposizione** La funzione \( f(x) \) ammette asintoto obliquo per \( x \to +\infty \) se e solo se valgono le seguenti due condizioni:

1) esiste finito

\[
\lim_{x \to +\infty} \frac{f(x)}{x} = m \neq 0
\]

2) esiste finito

\[
\lim_{x \to +\infty} [f(x) - mx] = q.
\]

In tale caso l’asintoto è esattamente \( y = mx + q \). Analogamente può essere enunciato nel caso \( x \to -\infty \).

**Esempio:** la funzione \( f(x) = e^x + 2x + 1 \) ammette come asintoto obliquo per \( x \to -\infty \) la retta \( y = 2x + 1 \).

**Limite infinito al finito**

In questo caso

\[
\lim_{x \to c} f(x) = \ell
\]

si scrive nel dettaglio:

se \( c \in \mathbb{R} \) e \( \ell = +\infty \)

\[
\forall K > 0 \exists \delta > 0 : \forall x \neq c, |x - c| < \delta \Rightarrow f(x) > K
\]

se \( c \in \mathbb{R} \) e \( \ell = -\infty \)

\[
\forall K > 0 \exists \delta > 0 : \forall x \neq c, |x - c| < \delta \Rightarrow f(x) < -K.
\]

Ad esempio:

\[
\lim_{x \to 0^+} \frac{1}{x^2} = +\infty.
\]

In questo caso il limite \( \lim_{x \to c} f(x) = \ell \) esiste solo se esistono e sono entrambi uguali a \( \ell \) i limiti destro e sinistro, cioè rispettivamente

\[
\lim_{x \to c^+} f(x) = \ell \quad \lim_{x \to c^-} f(x) = \ell.
\]
Tuttavia può accadere che i limiti destro e sinistro esistano e siano diversi tra loro oppure che uno solo dei due limiti esista. In tal caso si dice che il limite dato non esiste. Ad esempio si ha che
\[
\lim_{x \to 0} \frac{1}{x} \text{ non esiste.}
\]
Infatti si ha
\[
\lim_{x \to 0^+} \frac{1}{x} = +\infty \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty.
\]
In questi casi accade che \( f \) abbia un asintoto verticale. Più precisamente: si dice che \( f \) ha un asintoto verticale di equazione \( x = c \) (con \( c \in \mathbb{R} \)) per \( x \to c \) (oppure per \( x \to c^+ \) o \( x \to c^- \)) se accade che
\[
\lim_{x \to c} f(x) = +\infty \quad \lim_{x \to c} f(x) = -\infty
\]
or rispettivamente a seconda dei casi
\[
\lim_{x \to c^+} f(x) = +\infty \quad \lim_{x \to c^-} f(x) = -\infty
\]
or rispettivamente a seconda dei casi
\[
\lim_{x \to c^+} f(x) = +\infty \quad \lim_{x \to c^-} f(x) = -\infty
\]
Ad esempio \( x = 0 \) asintoto verticale ad esempio per le funzioni \( f(x) = 1/x, g(x) = 1/x^2, h(x) = \log x \).

**Limite finito al finito**

In questo caso
\[
\lim_{x \to c} f(x) = \ell
\]
si scrive nel dettaglio
\[
\forall \varepsilon > 0 \ \exists \delta > 0 : \forall x \neq c, |x - c| < \delta \Rightarrow |f(x) - \ell| < \varepsilon.
\]
Esempio:
\[
\lim_{x \to 0} \sin x = 0.
\]
Oppure consideriamo la funzione
\[
f(x) = \begin{cases} 
1 & x \neq 0 \\
0 & x = 0
\end{cases}
\]
allora è facile dimostrare con la definizione che
\[
\lim_{x \to 0} f(x) = 1
\]
perché per ogni successione di punti diversi da 0, la funzione calcolata nei valori della successione vale sempre costantemente 1. D'altra parte
\[
\lim_{x \to 0} f(x) = 1 \neq 0 = f(0).
\]
Invece nel caso dell'esempio precedente,
\[
\lim_{x \to 0} \sin x = 0 = \sin 0.
\]
La differenza sta nel fatto che la funzione seno ha una proprietà che l'altra funzione non ha: la continuità. Precisamente: Sia \( f : I \to \mathbb{R} \) con \( I \) intervallo e sia \( c \in I \). Allora si dice che \( f \) è continua in \( c \) se esiste
\[
\lim_{x \to c} f(x) = f(c).
\]
Si dice che \( f \) è continua in \( I \) se continua in ciascun punto di \( I \). Una funzione non continua in un punto \( c \) si dice discontinua.

Si dice che \( c \) un punto di discontinuità a salto per \( f(x) \) quando i limiti destro e sinistro esistono finiti ma diversi tra loro. In questo caso si definisce
\[
\text{salto in } c = \lim_{x \to c^+} f(x) - \lim_{x \to c^-} f(x).
\]
Se uno dei due limiti destro o sinistro coincide per \( x \to c \) con \( f(c) \) si dice che \( f \) è continua da destra o da sinistra rispettivamente.

Ad esempio La funzione \( f(x) = x/|x| = |x|/x \) presenta una discontinuità a salto per \( x = 0 \), visto che
\[
\lim_{x \to 0^+} \frac{x}{|x|} = +1
\]
e il salto in 0 vale 2. Naturalmente in generale in ognuno dei 4 casi presentati, il limite può anche non esistere, anche nel caso di funzioni continue o limitate. Ad esempio
\[
\lim_{x \to +\infty} \sin x.