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Transducive System

Input Value Output Value

transduciveSystem :  Values  ® Values

Reactive System

Input Signal OutputSignal

reactiveSystem :  [ Time ® Values ] ® [ Time ® Values ]



Discrete time: Time = Nats0 = { 0, 1, 2, … }

Continuous time: Time = Reals+ = { x Î Reals | x ³ 0 }



A reactive system 

F :  [ Time ® Values ] ® [ Time ® Values ]

is  memory-free

iff

there exists a transducive system

f :  Values  ® Values

such that

" x Î [ Time ® Values ] ,  " y Î Time,

( F (x) ) (y)  =  f ( x (y) ) .



A reactive system 

F :  [ Time ® Values ] ® [ Time ® Values ]

is  causal 

iff

" x, y Î [ Time ® Values ] ,  " z Î Time,

if       ( " t Î Time,  t £ z  Þ x (t) = y (t) )  

then   ( F (x) ) (z)  =  ( F (y) ) (z)  .



The Delay System

Delayc :  [ Time ® Values ] ® [ Time ® Values ]

such that  " x Î [ Time ® Values ] , " y Î Time,

( Delay (x) ) (y) = 
c if  y < 1

x (y-1)     if  y ³ 1{



Discrete-time delay over finite set of values :

finite memory

Continuous-time delay, or infinite set of values:

infinite memory



Legal Transducive Block Diagrams

-all components are transducive systems

-no cycles

e.g., combinational circuits

Legal Reactive Block Diagrams

-all components are memory-free or delay systems

-every cycle contains at least one delay 

e.g., sequential circuits



Discrete-time reactive systems with 

finite memory

are naturally implemented as

finite state machines.



A Discrete-Time Reactive System

Nats0 ® Inputs Nats0 ® Outputs

F :  [ Nats0 ® Inputs ]  ® [ Nats0 ® Outputs ]

F



State Machine Implementation

Nats0 ® Inputs Nats0 ® Outputs

DinitialState

Update
11

2 2

Nats0®
States

Nats0®
States

update :  States ´ Inputs  ® States ´ Outputs

initialState Î States    

F memory-free

delay stores 
state



Deterministic State Machine

Inputs ( set of possible input values )

Outputs ( set of possible output values )

States ( set of states )  

initialState Î States

update :  States ´ Inputs  ® States ´ Outputs



Any block diagram of N state 
machines with the state spaces  

States1, States2, … StatesN

can be implemented by a single state 
machine with the state space 

States1 ´ States2 ´ … ´ StatesN .

This is called a “product machine”.

Product of State Machines



Deterministic Reactive System:

for every input signal, there is exactly one output signal.

DetSys :  [ Time ® Inputs ] ® [ Time ® Outputs ]

Function:



Nondeterministic Reactive System:

for every input signal, there is one or more output signals.

NondetSys  Í [ Time ® Inputs ] ´ [ Time ® Outputs ]

such that  " x Î [ Time ® Inputs ],   
$ y Î [ Time ® Outputs ],  (x,y) Î NondetSys

Binary relation:

Every pair  (x,y) Î NondetSys  is called a behavior.



System  S1  refines system  S2

iff

1.  Time [S1] = Time [S2] ,

2.  Inputs [S1] = Inputs [S2] ,

3.  Outputs [S1] = Outputs [S2] ,

4.  Behaviors [S1]  Í Behaviors [S2] .

S1 is a more detailed 
description of S2; 

S2 is an abstraction or 
property of S1.



Systems  S1  and  S2  are equivalent

iff

1.  Time [S1] = Time [S2] ,

2.  Inputs [S1] = Inputs [S2] ,

3.  Outputs [S1] = Outputs [S2] ,

4.  Behaviors [S1]  = Behaviors [S2] .



Nondeterministic State Machine

Inputs

Outputs

States

possibleInitialStates Í States

possibleUpdates :  
States ´ Inputs  ® P( States ´ Outputs ) \ Ø

receptiveness (i.e., machine must 
be prepared to accept every input)



State Machines

Deterministic

ß Ý

Output-deterministic

ß Ý

Nondeterministic
X

X



A state machine is deterministic

iff

1. there is only one initial state, and

2. for every state and every input, 
there is only one successor state.

A state machine is output-deterministic

iff

1. there is only one initial state, and

2. for every state and every input-output pair, 
there is only one successor state.



For deterministic M2 :

M1  is simulated by  M2 iff   M1  is equivalent to  M2.

For output-deterministic M2 :

M1  is simulated by  M2 iff   M1  refines  M2.

For nondeterministic M2 :

M1  is simulated by  M2 implies   M1  refines  M2.

condition on infinitely 
many behaviors

relation between 
finitely many states



A binary relation  S Í States [M1] ´ States [M2]  is a 
simulation of M1 by M2

iff

1.  " p Î possibleInitialStates [M1] ,                        

$ q Î possibleInitialStates [M2],  ( p, q ) Î S and

2.  " p Î States [M1] ,  " q Î States [M2] ,

if  ( p, q ) Î S ,

then   " x Î Inputs , " y Î Outputs , " p’ Î States [M1] ,  

if  ( p’, y ) Î possibleUpdates [M1] ( p, x )

then  $ q’ Î States [M2] ,

( q’, y ) Î possibleUpdates [M2] ( q, x )  and 

( p’, q’ ) Î S .



To check if M1 refines M2,            
check if M1 is simulated by det(M2):

M1  refines  M2

iff

M1  refines  det(M2)

iff

M1  is simulated by   det(M2).

output-deterministic



If  M2  is an output-deterministic state machine, then 
a simulation S of M1 by M2 can be found as follows: 

1.  If  p Î possibleInitialStates [M1]  and 

possibleInitialStates [M2]  =  { q } , 

then  (p,q) Î S.

2.  If  (p,q) Î S  and 

(p’,y) Î possibleUpdates [M1] (p,x)  and

possibleUpdates [M2] (q,x)  =  { (q’,y) } ,

then  (p’,q’) Î S.



Output-Determinization

Given:    nondeterministic state machine M

Find:      output-deterministic state machine det(M)
that is equivalent to M

Inputs [det(M)]    = Inputs [M]

Outputs [det(M)] = Outputs [M]



The Subset Construction

Let  initialState [ det(M) ] = possibleInitialStates [M] ;

Let  States [ det(M) ] = { initialState [det(M)] } ;

Repeat as long as new transitions can be added to det(M) :
Choose  P Î States [det(M)] and  (x,y) Î Inputs ´ Outputs ;

Let  Q = { q Î States [M] | $ p Î P,  (q,y) Î possibleUpdates [M] (p,x) } ;

If  Q ¹ Ø then 

Let  States [det(M)] = States [det(M)] È {Q} ;

Let  update [det(M)] (P,x) = (Q,y) .



Minimization Algorithm

Input :      nondeterministic state machine M

Output :   minimize (M), the state machine with 
the fewest states that is bisimilar to M 

(the result is unique up to renaming of 
states)



A binary relation  B Í States [M1] ´ States [M2]  is a 
bisimulation between M1 and M2

iff

A1.  " p Î possibleInitialStates [M1] ,                        

$ q Î possibleInitialStates [M2],  ( p, q ) Î B,  and

A2.  " p Î States [M1] ,  " q Î States [M2] ,

if  ( p, q ) Î B ,

then   " x Î Inputs , " y Î Outputs , " p’ Î States [M1] ,  

if  ( p’, y ) Î possibleUpdates [M1] ( p, x )

then  $ q’ Î States [M2] ,

( q’, y ) Î possibleUpdates [M2] ( q, x )  and 

( p’, q’ ) Î B ,  and



B1.  " q Î possibleInitialStates [M2] ,                        

$ p Î possibleInitialStates [M1],  ( p, q ) Î B,  and

B2.  " p Î States [M1] ,  " q Î States [M2] ,

if  ( p, q ) Î B ,

then   " x Î Inputs , " y Î Outputs , " q’ Î States [M2] ,  

if  ( q’, y ) Î possibleUpdates [M2] ( q, x )

then  $ p’ Î States [M1] ,

( p’, y ) Î possibleUpdates [M1] ( p, x )  and 

( p’, q’ ) Î B .

and



For nondeterministic state machines M1 and M2, 

M1 is equivalent to M2

ß Ý

M1 simulates M2  and  M2 simulates M1

ß Ý

M1 and M2 are bisimilar.

X

For output-deterministic state machines M1 and M2, 

M1 is equivalent to M2

ß Ý

M1 and M2 are bisimilar.

X



1.  Let  Q  be set of all reachable states of M. 

2.  Maintain a set P of state sets:

Initially let  P = { Q }. 

Repeat until no longer possible:  split P.

3.  When done, every state set in P represents a single 
state of the smallest state machine bisimilar to M.

Minimization Algorithm



Split P

If there exist

two state sets  R Î P  and  R’ Î P 
two states  r1 Î R  and  r2 Î R 
an input  x Î Inputs
an output  y Î Outputs

such that 

$ r’ Î R’, ( r’, y ) Î possibleUpdates ( r1, x )  and

" r’ Î R’,  ( r’, y ) Ï possibleUpdates ( r2, x )   
then

let  R1 = { r Î R | $ r’ Î R’,  ( r’, y ) Î possibleUpdates ( r, x ) } ;
let  R2  =  R \ R1 ;
let  P  =  ( P \ { R } ) È { R1, R2 } .



The Finite-State Safety Control Problem

Given
finite-state machine Plant

1.

2.   set Error of states of Plant 

Find
finite-state machine     

Controller

such that the composite system never enters 
a state in Error



The Finite-State Progress Control Problem

Given
finite-state machine Plant

1.

2.   set Target of states of Plant 

Find
finite-state machine     

Controller

such that the composite system is guaranteed 
to enter a state in Target



Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.

2. For all states s,

if   for all inputs i         
there exist a safety-uncontrollable 

state s’ and an output o
such that  (s’,o) Î possibleUpdates (s,i)

then   s is safety-uncontrollable.



Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.

2. For all states s,

if   there exists an input i         
for all states s’ and outputs o
if  (s’,o) Î possibleUpdates (s,i)
then  s’ is progress-controllable

then   s is progress-controllable.



Typical Exam Questions

A.  Convert between the following system representations:

1.  Mathematical input-output definition
2.  Transition diagram
3.  Block diagram

B. Apply the following algorithms on state machines:

1.  Product construction
2. Subset construction
3. Check for existence of a simulation
4.  Minimization
5.  Compute controllable states

C. Explain the following concepts:

1. Memory-free vs. finite-state vs. infinite-state          
2. Equivalence/refinement vs. simulation vs. bisimulation 
3. Safety vs. progress control 


