
EECS 20

Lecture 38 (April 27, 2001)

Tom Henzinger

Review

Revised by Matteo Zavatteri and Tiziano Villa, Fall 2020

Transducive System

Input Value Output Value

transduciveSystem : Values ® Values

Reactive System

Input Signal OutputSignal

reactiveSystem : [Time ® Values] ® [Time ® Values]

Discrete time: Time = Nats0 = { 0, 1, 2, … }

Continuous time: Time = Reals+ = { x Î Reals | x ³ 0 }

A reactive system

F : [Time ® Values] ® [Time ® Values]

is memory-free

iff

there exists a transducive system

f : Values ® Values

such that

" x Î [Time ® Values] , " y Î Time,

(F (x)) (y) = f (x (y)) .

A reactive system

F : [Time ® Values] ® [Time ® Values]

is causal

iff

" x, y Î [Time ® Values] , " z Î Time,

if (" t Î Time, t £ z Þ x (t) = y (t))

then (F (x)) (z) = (F (y)) (z) .

The Delay System

Delayc : [Time ® Values] ® [Time ® Values]

such that " x Î [Time ® Values] , " y Î Time,

(Delay (x)) (y) =
c if y < 1

x (y-1) if y ³ 1{

Discrete-time delay over finite set of values :

finite memory

Continuous-time delay, or infinite set of values:

infinite memory

Legal Transducive Block Diagrams

-all components are transducive systems

-no cycles

e.g., combinational circuits

Legal Reactive Block Diagrams

-all components are memory-free or delay systems

-every cycle contains at least one delay

e.g., sequential circuits

Discrete-time reactive systems with

finite memory

are naturally implemented as

finite state machines.

A Discrete-Time Reactive System

Nats0 ® Inputs Nats0 ® Outputs

F : [Nats0 ® Inputs] ® [Nats0 ® Outputs]

F

State Machine Implementation

Nats0 ® Inputs Nats0 ® Outputs

DinitialState

Update
11

2 2

Nats0®
States

Nats0®
States

update : States ´ Inputs ® States ´ Outputs

initialState Î States

F memory-free

delay stores
state

Deterministic State Machine

Inputs (set of possible input values)

Outputs (set of possible output values)

States (set of states)

initialState Î States

update : States ´ Inputs ® States ´ Outputs

Any block diagram of N state
machines with the state spaces

States1, States2, … StatesN

can be implemented by a single state
machine with the state space

States1 ´ States2 ´ … ´ StatesN .

This is called a “product machine”.

Product of State Machines

Deterministic Reactive System:

for every input signal, there is exactly one output signal.

DetSys : [Time ® Inputs] ® [Time ® Outputs]

Function:

Nondeterministic Reactive System:

for every input signal, there is one or more output signals.

NondetSys Í [Time ® Inputs] ´ [Time ® Outputs]

such that " x Î [Time ® Inputs],
$ y Î [Time ® Outputs], (x,y) Î NondetSys

Binary relation:

Every pair (x,y) Î NondetSys is called a behavior.

System S1 refines system S2

iff

1. Time [S1] = Time [S2] ,

2. Inputs [S1] = Inputs [S2] ,

3. Outputs [S1] = Outputs [S2] ,

4. Behaviors [S1] Í Behaviors [S2] .

S1 is a more detailed
description of S2;

S2 is an abstraction or
property of S1.

Systems S1 and S2 are equivalent

iff

1. Time [S1] = Time [S2] ,

2. Inputs [S1] = Inputs [S2] ,

3. Outputs [S1] = Outputs [S2] ,

4. Behaviors [S1] = Behaviors [S2] .

Nondeterministic State Machine

Inputs

Outputs

States

possibleInitialStates Í States

possibleUpdates :
States ´ Inputs ® P(States ´ Outputs) \ Ø

receptiveness (i.e., machine must
be prepared to accept every input)

State Machines

Deterministic

ß Ý

Output-deterministic

ß Ý

Nondeterministic
X

X

A state machine is deterministic

iff

1. there is only one initial state, and

2. for every state and every input,
there is only one successor state.

A state machine is output-deterministic

iff

1. there is only one initial state, and

2. for every state and every input-output pair,
there is only one successor state.

For deterministic M2 :

M1 is simulated by M2 iff M1 is equivalent to M2.

For output-deterministic M2 :

M1 is simulated by M2 iff M1 refines M2.

For nondeterministic M2 :

M1 is simulated by M2 implies M1 refines M2.

condition on infinitely
many behaviors

relation between
finitely many states

A binary relation S Í States [M1] ´ States [M2] is a
simulation of M1 by M2

iff

1. " p Î possibleInitialStates [M1] ,

$ q Î possibleInitialStates [M2], (p, q) Î S and

2. " p Î States [M1] , " q Î States [M2] ,

if (p, q) Î S ,

then " x Î Inputs , " y Î Outputs , " p’ Î States [M1] ,

if (p’, y) Î possibleUpdates [M1] (p, x)

then $ q’ Î States [M2] ,

(q’, y) Î possibleUpdates [M2] (q, x) and

(p’, q’) Î S .

To check if M1 refines M2,
check if M1 is simulated by det(M2):

M1 refines M2

iff

M1 refines det(M2)

iff

M1 is simulated by det(M2).

output-deterministic

If M2 is an output-deterministic state machine, then
a simulation S of M1 by M2 can be found as follows:

1. If p Î possibleInitialStates [M1] and

possibleInitialStates [M2] = { q } ,

then (p,q) Î S.

2. If (p,q) Î S and

(p’,y) Î possibleUpdates [M1] (p,x) and

possibleUpdates [M2] (q,x) = { (q’,y) } ,

then (p’,q’) Î S.

Output-Determinization

Given: nondeterministic state machine M

Find: output-deterministic state machine det(M)
that is equivalent to M

Inputs [det(M)] = Inputs [M]

Outputs [det(M)] = Outputs [M]

The Subset Construction

Let initialState [det(M)] = possibleInitialStates [M] ;

Let States [det(M)] = { initialState [det(M)] } ;

Repeat as long as new transitions can be added to det(M) :
Choose P Î States [det(M)] and (x,y) Î Inputs ´ Outputs ;

Let Q = { q Î States [M] | $ p Î P, (q,y) Î possibleUpdates [M] (p,x) } ;

If Q ¹ Ø then

Let States [det(M)] = States [det(M)] È {Q} ;

Let update [det(M)] (P,x) = (Q,y) .

Minimization Algorithm

Input : nondeterministic state machine M

Output : minimize (M), the state machine with
the fewest states that is bisimilar to M

(the result is unique up to renaming of
states)

A binary relation B Í States [M1] ´ States [M2] is a
bisimulation between M1 and M2

iff

A1. " p Î possibleInitialStates [M1] ,

$ q Î possibleInitialStates [M2], (p, q) Î B, and

A2. " p Î States [M1] , " q Î States [M2] ,

if (p, q) Î B ,

then " x Î Inputs , " y Î Outputs , " p’ Î States [M1] ,

if (p’, y) Î possibleUpdates [M1] (p, x)

then $ q’ Î States [M2] ,

(q’, y) Î possibleUpdates [M2] (q, x) and

(p’, q’) Î B , and

B1. " q Î possibleInitialStates [M2] ,

$ p Î possibleInitialStates [M1], (p, q) Î B, and

B2. " p Î States [M1] , " q Î States [M2] ,

if (p, q) Î B ,

then " x Î Inputs , " y Î Outputs , " q’ Î States [M2] ,

if (q’, y) Î possibleUpdates [M2] (q, x)

then $ p’ Î States [M1] ,

(p’, y) Î possibleUpdates [M1] (p, x) and

(p’, q’) Î B .

and

For nondeterministic state machines M1 and M2,

M1 is equivalent to M2

ß Ý

M1 simulates M2 and M2 simulates M1

ß Ý

M1 and M2 are bisimilar.

X

For output-deterministic state machines M1 and M2,

M1 is equivalent to M2

ß Ý

M1 and M2 are bisimilar.

X

1. Let Q be set of all reachable states of M.

2. Maintain a set P of state sets:

Initially let P = { Q }.

Repeat until no longer possible: split P.

3. When done, every state set in P represents a single
state of the smallest state machine bisimilar to M.

Minimization Algorithm

Split P

If there exist

two state sets R Î P and R’ Î P
two states r1 Î R and r2 Î R
an input x Î Inputs
an output y Î Outputs

such that

$ r’ Î R’, (r’, y) Î possibleUpdates (r1, x) and

" r’ Î R’, (r’, y) Ï possibleUpdates (r2, x)
then

let R1 = { r Î R | $ r’ Î R’, (r’, y) Î possibleUpdates (r, x) } ;
let R2 = R \ R1 ;
let P = (P \ { R }) È { R1, R2 } .

The Finite-State Safety Control Problem

Given
finite-state machine Plant

1.

2. set Error of states of Plant

Find
finite-state machine

Controller

such that the composite system never enters
a state in Error

The Finite-State Progress Control Problem

Given
finite-state machine Plant

1.

2. set Target of states of Plant

Find
finite-state machine

Controller

such that the composite system is guaranteed
to enter a state in Target

Compute the safety-uncontrollable states of Plant

1. Every state in Error is safety-uncontrollable.

2. For all states s,

if for all inputs i
there exist a safety-uncontrollable

state s’ and an output o
such that (s’,o) Î possibleUpdates (s,i)

then s is safety-uncontrollable.

Compute the progress-controllable states of Plant

1. Every state in Target is progress-controllable.

2. For all states s,

if there exists an input i
for all states s’ and outputs o
if (s’,o) Î possibleUpdates (s,i)
then s’ is progress-controllable

then s is progress-controllable.

Typical Exam Questions

A. Convert between the following system representations:

1. Mathematical input-output definition
2. Transition diagram
3. Block diagram

B. Apply the following algorithms on state machines:

1. Product construction
2. Subset construction
3. Check for existence of a simulation
4. Minimization
5. Compute controllable states

C. Explain the following concepts:

1. Memory-free vs. finite-state vs. infinite-state
2. Equivalence/refinement vs. simulation vs. bisimulation
3. Safety vs. progress control

