4.6 Exercises - Part 2

(published on October 28, solutions to be submitted on November 10, 2016).

Exercise 5. Let R be a ring.

- (a) An idempotent element $e \in R$ is called *primitive* if it is not a sum of two non zero orthogonal idempotents. Show that Re is indecomposable if and only if e is primitive.
- (b) Find the decomposition in indecomposable summands of
 - (i) $M_2(\mathbb{C})$ = the ring of 2 × 2 matrices with coefficients in \mathbb{C} ,
 - (ii) the path algebra of the quiver $Q: \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet$ over \mathbb{C} .
- (c) Let E_i , i = 1, ..., n, be *R*-modules. Show: $\bigoplus_{i=1}^n E_i$ is injective if and only if E_i is injective for any i = 1 ... n.
- (d) Let $f \in \text{Hom}_R(L, M)$ be an essential monomorphism, and $g \in \text{Hom}_R(M, N)$. Show: if gf is a monomorphism, then so is g.
- **Exercise 6.** (a) Write the representation $K^2 \xrightarrow{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} K^2$ of \mathbb{A}_2 as a direct sum of two indecomposable representations.
- (b) Find the injective envelope of the representation $0 \to K$ of \mathbb{A}_2 .
- (c) Given the path algebra $\Lambda = kQ$ of the quiver $Q : 1 \leftarrow 2 \rightarrow 3 \rightarrow 4$, compute the module Λe_2 , its radical, and its socle.
- **Exercise 7.** (a) Show: If X is a generating set of the \mathbb{Z} -module \mathbb{Q} , and $x \in X$, then $X \setminus \{x\}$ is a generating set of \mathbb{Q} as well.
- (b) Deduce from (a) that every finitely generated submodule of $_{\mathbb{Z}}\mathbb{Q}$ is superfluous.
- (c) Conclude that $\operatorname{Rad}_{\mathbb{Z}} \mathbb{Q} = \mathbb{Q}$, and \mathbb{Q} has no maximal submodules.
- (d) Let M be a finitely generated left R-module iver a ring R. Show that any proper submodule L < M is contained in a maximal submodule of M.

Exercise 8. Show that $\operatorname{Rad}(_RR) = \{r \in R \mid 1 - xr \text{ has a left inverse for any } x \in R\}$. (Hint: Argue by contradiction, and use that $\operatorname{Rad}(_RR)$ is the intersection of the annihilators of the simple left *R*-modules for \supseteq .)