4.6 Exercises - Part 2

(published on October 28, solutions to be submitted on November 10, 2016).

Exercise 5. Let R be a ring.
(a) An idempotent element $e \in R$ is called primitive if it is not a sum of two non zero orthogonal idempotents. Show that $R e$ is indecomposable if and only if e is primitive.
(b) Find the decomposition in indecomposable summands of
(i) $M_{2}(\mathbb{C})=$ the ring of 2×2 matrices with coefficients in \mathbb{C},
(ii) the path algebra of the quiver $Q: \bullet \leftarrow \bullet \rightarrow \bullet \rightarrow \bullet$ over \mathbb{C}.
(c) Let $E_{i}, i=1, \ldots, n$, be R-modules. Show: $\bigoplus_{i=1}^{n} E_{i}$ is injective if and only if E_{i} is injective for any $i=1 \ldots n$.
(d) Let $f \in \operatorname{Hom}_{R}(L, M)$ be an essential monomorphism, and $g \in \operatorname{Hom}_{R}(M, N)$. Show: if $g f$ is a monomorphism, then so is g.

Exercise 6. (a) Write the representation $K^{2} \xrightarrow{\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)} K^{2}$ of \mathbb{A}_{2} as a direct sum of two indecomposable representations.
(b) Find the injective envelope of the representation $0 \rightarrow K$ of \mathbb{A}_{2}.
(c) Given the path algebra $\Lambda=k Q$ of the quiver $Q: 1 \leftarrow 2 \rightarrow 3 \rightarrow 4$, compute the module Λe_{2}, its radical, and its socle.

Exercise 7. (a) Show: If X is a generating set of the \mathbb{Z}-module \mathbb{Q}, and $x \in X$, then $X \backslash\{x\}$ is a generating set of \mathbb{Q} as well.
(b) Deduce from (a) that every finitely generated submodule of $\mathbb{Z} \mathbb{Q}$ is superfluous.
(c) Conclude that $\operatorname{Rad}_{\mathbb{Z}} \mathbb{Q}=\mathbb{Q}$, and \mathbb{Q} has no maximal submodules.
(d) Let M be a finitely generated left R-module iver a ring R. Show that any proper submodule $L<M$ is contained in a maximal submodule of M.

Exercise 8. Show that $\operatorname{Rad}\left({ }_{R} R\right)=\{r \in R \mid 1-x r$ has a left inverse for any $x \in R\}$. (Hint: Argue by contradiction, and use that $\operatorname{Rad}\left({ }_{R} R\right)$ is the intersection of the annihilators of the simple left R-modules for \supseteq.)

