

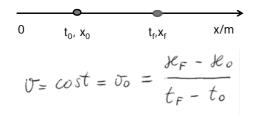
Cinematica

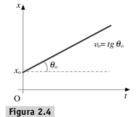
Accelerazione media:

$$\vec{Q}_{m} = \frac{\vec{v}_{2} - \vec{v}_{3}}{t_{2} - t_{4}} = \frac{\Delta \vec{v}}{\Delta t}$$

Accelerazione istantanea:

$$\vec{Q} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$


Unità di misura: m/s2

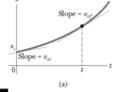


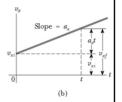
Cinematica

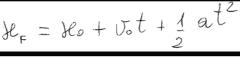
■ Moto rettilineo uniforme

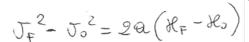
 ■ Definizione: moto che avviene con velocità costante in modulo verso e direzione ----→ traiettoria è una retta.

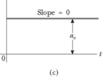
Traiettoria (sopra), legge oraria e grafico spazio-tempo di un moto rettilineo uniforme.

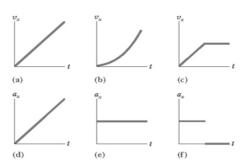

Cinematica


■ Moto rettilineo uniformemente accelerato


Un oggetto che parte da fermo (v_0 =0), o con velocità diretta come l'accelerazione, ed è soggetto ad una accelerazione costante in modulo verso e direzione compie un moto rettilineo uniformemente accelerato.


$$a = cost = \frac{J_F - J_o}{t_F - t_o}$$


UF = Jo + at



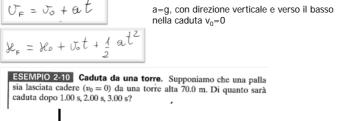
Cinematica

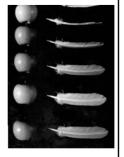
FIGURA 2.8 (Quiz rapido 2.3). Le parti (a), (b), e (c) sono i grafici veloctà-tempo di oggetti in moto unodimensionale. I possibili grafici accelerazione-tempo di ciascun oggetto sono mostrati in ordine sparso nelle parti (d), (e), e

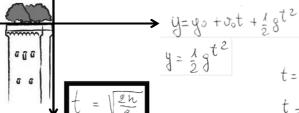
Esempio: automobile che rallenta.

Un'automobile si sta muovendo lungo un'autostrada rettilinea. Ad un certo istante il conducente pigia il freno. Se la velocità iniziale (quando pigia il freno) era v_1 =100 km/h, e impiega 5 s a rallentare, fino a 40 km/h, quale è l'accelerazione media dell'auto?

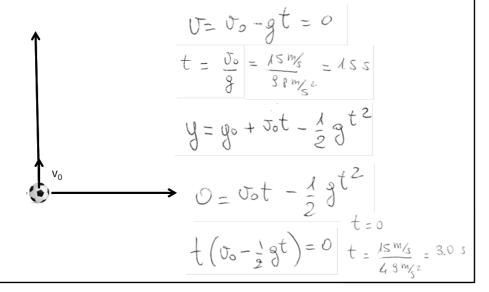
 $V_1=100 \text{km/h}=28 \text{ m/s}$ $V_2=40 \text{km/h}=11.2 \text{m/s}$


 $a_m = [(11.2-28) \text{ m/s}]/5 \text{ s} = -3.4 \text{ m/s}2$

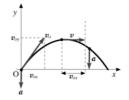



Cinematica

Caduta dei gravi


Moto rettilineo uniformemente accelerato con accelerazione costante g=9.8 m/s² (in assenza di attrito o con attrito trascurabile) diretta verso il basso.

 $t = 1.00 \, s$ $y = 4.9 \, m$ $t = 2.00 \, s$ $y = 18.6 \, m$ ESEMPIO 2-12 Palla lanciata verso l'alto, I. Una persona lancia una palla in aria verso l'alto con una velocità iniziale di 15.0 m/s. Calcolate (a) quanto in alto arriva la palla, e (b) quanto a lungo rimane in aria prima di ricadere in mano a chi l'ha lanciata.



Cinematica

■ Moto del proiettile

$$x = x_0 + v_{ox}t$$
$$y = y_0 + v_{oy}t - \frac{a}{2}t^2.$$

$$y = \frac{v_{\text{oy}}}{v_{\text{ox}}} x - \frac{a}{2v_{\text{ox}}^2} x^2,$$

Figura 2.6

Traiettoria parabolica che si ottiene quando un oggetto è sottoposto a un'accelerazione a costante e a una velocità iniziale v_o che non è paralela ad a. Si noti che la componente della velocità v_{oo} perpendicolare ad a rimane costante durante il moto.

Dinamica

Principi della dinamica

1)Ogni corpo permane nel suo stato di quiete o di moto rettilineo ed uniforme, finchè forze esterne ad esso non intervengono a modificarne lo stato di moto (principio di inerzia).

2)L'accelerazione subita da un corpo è in ogni istante proporzionale alla forza agente su di esso (**F**=m**a**, dove m>0).

3) Dati due corpi A e B, se A esercita su B una forza **F**, B esercita su A una forza -**F**, cioè una forza avente stesso modulo, stessa direzione, e verso opposto (azione e reazione).

m (massa inerziale), grandezza fisica fondamentale espressa in kg. Caratteristica del corpo studiato.

Sistemi di riferimento inerziali, quei sistemi nei quali vale il principio di inerzia. Sistema di rifermento legato alle stelle fisse e tutti i sistemi in moto rettilineo e uniforme rispetto ad esso. Anche un sistema di riferimento legato alla terra può essere considerato un sistema inerziale.

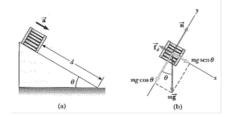
Dinamica

Unità di misura della forza (Newton): 1 N è la forza che agente su una massa di 1 kg produce un'accelerazione di 1 m/s2.

$$1N=1 \text{ kg*m/s}^2$$

$$\Sigma \vec{F} = m\vec{e}$$

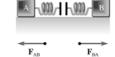
$$\begin{cases} \Sigma F_x = me_x \\ \Sigma F_y = me_y \\ \Sigma F_z = me_z \end{cases}$$


Varie forze: forza peso, reazione vincolare, forza di attrito.

Dinamica

Esempio: piano inclinato con attrito

Un magazziniere pone una cassa su una superficie in pendenza che è inclinata di 30.0° rispetto all'orizzontale (Fig. 5.7a). Se la cassa scivola giù lungo il piano inclinato con un'accelerazione di modulo g/3, determinare il coefficiente d'attrito dinamico fra la cassa e la superficie d'appoggio.



Dinamica

Conseguenza del III principio: conservazione della quantità di moto.

$$\mathbf{q}=m\,\mathbf{v},$$

Unità di misura: kg*m/s

Una semplice situazione atta a illu-

strare il principio di azione e reazione e la conseguente conservazione della quantità di moto nei sistemi isolati. I corpi A e B poggiano

senza attrito su un piano orizzontale e interagiscono quando le molle

Teorema di conservazione della quantità di moto: in un sistema isolato, la quantità di moto totale del sistema si conserva.

$$a_{\rm A} = \frac{\mathbf{F}_{\rm AB}}{m_{\rm A}} = \frac{\Delta v_{\rm A}}{\Delta t}, \ a_{\rm B} = \frac{\mathbf{F}_{\rm BA}}{m_{\rm B}} = \frac{\Delta v_{\rm B}}{\Delta t},$$

$$\mathbf{F}_{AB} + \mathbf{F}_{BA} = 0$$

$$m_{\rm A} \Delta v_{\rm A} + m_{\rm B} \Delta v_{\rm B} = 0$$

$$\Delta(\mathbf{q}_{A} + \mathbf{q}_{B}) = \Delta\mathbf{q}_{\text{totale}} = 0.$$

vengono a contatto.

Scanni
Fisic
EdiSES
EdiSES

Figura 2.10

Scannicchio Fisica Biomedi

La quantità di moto totale rimane costante

Dinamica

IMPORTANTE: nessuna ipotesi sulla natura delle forze, solo che siano forze interne al sistema.

(Esempio 8.2) Un arciere lancia una freccia orizzontalmente. Poiché sta senza attrito su del ghiaccio, comincia a scivolare sul ghiaccio.

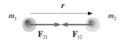
Il sistema arciere freccia è un sistema isolato (sono soggetti alla forza di gravità, ma questa agisce verticalmente, mentre il moto è orizzontale). Quindi possiamo applicare la conservazione della quantità di moto nella direzione orizzontale.

Nella condizione iniziale sia arciere che freccia sono fermi per cui la quantità di moto del sistema è nulla. Quindi anche la quantità di moto finale deve essere nulla.

$$m_1 \vec{\mathbf{v}}_{1f} + m_2 \vec{\mathbf{v}}_{2f} = 0$$

Relativamente alla direzione x. Prendiamo come direzione positiva la direzione della freccia.

Dati: massa freccia 0.5 kg, Velocità freccia 50 m/s lungo l'asse x, massa arciere 60 kg.



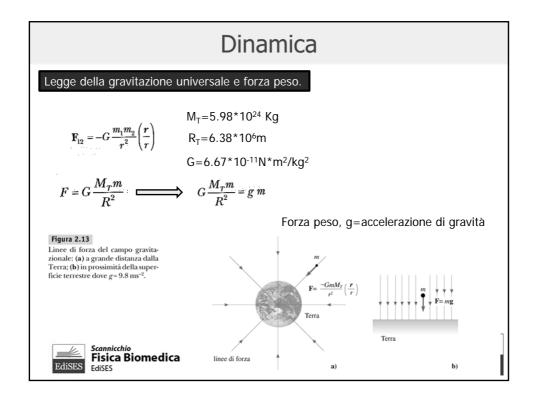
Dinamica

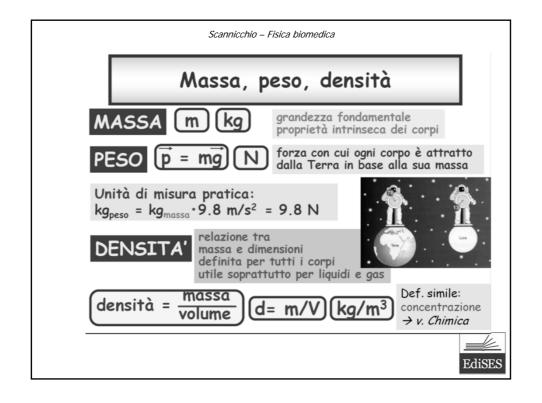
Campo di forze

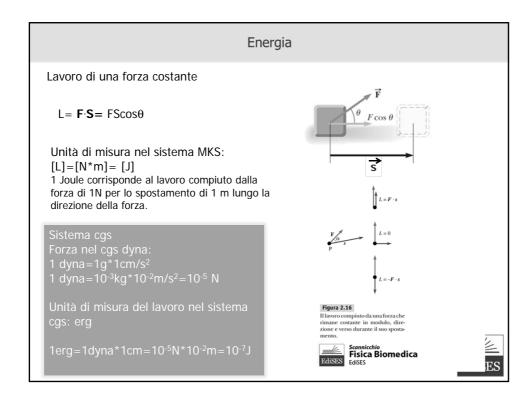
Una regione dello spazio è sede di un campo di forze quando in ogni suo punto è definita una forza che agisce su un corpo posto in quel punto.

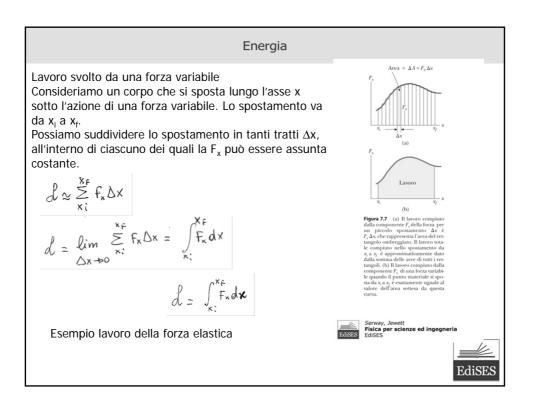
Forze del campo gravitazionale

$$\mathbf{F}_{12} = -G \frac{m_1 m_2}{r^2} \left(\frac{\mathbf{r}}{r} \right) \quad \left[G = 6.67 \cdot 10^{-11} \text{ newton m}^2 \text{kg}^{-2} \right]$$


Legge di Newton della gravitazione universale. G costante di gravitazione universale




Figura 2.11
In un punto qualsiasi di un campo di forze il vettore forza è tangente alla linea di forza.



L'energia di un corpo è la capacità che esso ha di compiere lavoro.

- Energia cinetica
- Energia potenziale gravitazionale
- Energia potenziale elettrica
- Energia termica Energia chimica

Principio di conservazione dell'energia: In qualsiasi fenomeno fisico in cui vi sia trasformazione di una forma di energia in un'altra, l'energia totale si conserva sempre.

Un corpo di massa m e velocità v, possiede energia cinetica data da E_k=(1/2)mv²

Teorema del lavoro e dell'energia cinetica:

Se una forza F è applicata al corpo (F può essere la forza risultante) vale che il lavoro compiuto sul corpo è uguale alla variazione dell'energia cinetica del

Energia

Un corpo di massa m in moto con velocità v è dotato di energia cinetica E_k:

$$E_k = (1/2) * mv^2$$

Sia F la forza risultante applicata al corpo; il lavoro della forza F è uguale alla variazione dell'energia cinetica del corpo:

$$L = \Delta E_k$$

Dimostrazione: Se ${f F}$ cost, moto rettilineo uniformemente accelerato. Consideriamo un intervallo di tempo compreso tra t_1 e t_2 , e sia v_1 e v_2 la velocità nei due istanti di tempo.

Sia $\Delta t = (t_2 - t_1)$;

Nell'intervallo Δt , la velocità media vale $v_m = (1/2)(v_1 + v_2)$ e lo spazio percorso sarà

$$d = F \cdot \Delta x = m \cdot \Delta x = m \cdot \frac{J_2 - J_4}{\Delta t} \cdot \frac{J_4 + J_2}{2} \Delta t$$

= EKS- EKT = DEK

Campi di forze conservative, energia potenziale e conservazione dell'energia meccanica

Una forza è conservativa se il lavoro compiuto per spostare un corpo da un punto A ad un punto B non dipende dal percorso seguito ma solo dalla posizione iniziale e finale (dai punti A e B).

Una forza è conservativa se il lavoro compiuto per spostare un corpo da un punto su un percorso chiuso è nullo.

Per le forze conservative si può definire una funzione delle sole coordinate spaziali, tale che il lavoro si può esprimere come differenza dei valori assunti dalla funzione nei punti A e B:

$$L_{AB}=U(A)-U(B)=-\Delta U$$

Tale funzione si chiama energia potenziale.

Conservazione dell'energia meccanica: Nel caso di forze conservative vale che $L=\Delta E_k$ e $L=-\Delta U$

$$\Delta E_k = -\Delta U \qquad E_{k2} - E_{k1} = U_1 - U_2 \qquad E_{k1} + U_1 = E_{k2} + U_2$$

Energia

Applicazione: caduta libera

Cinematica:

$$t = \sqrt{\frac{2h}{g}}$$

$$T = gt = g \sqrt{\frac{2h}{g}} =$$

Energia:

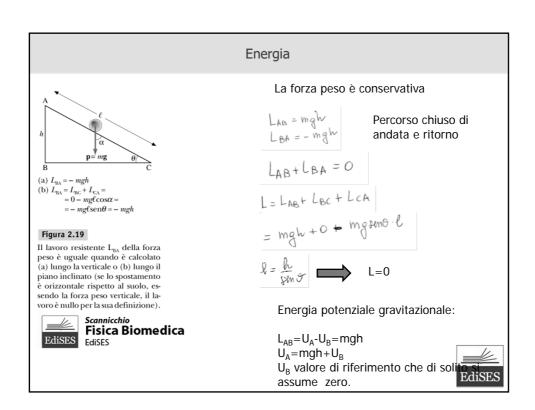
F cost, spostamento s (F e s stessa direzione):

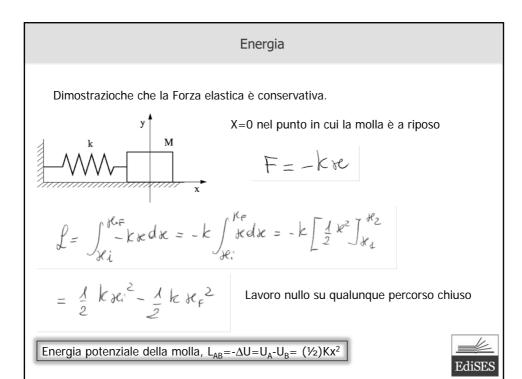
 $U+E_k=cost$

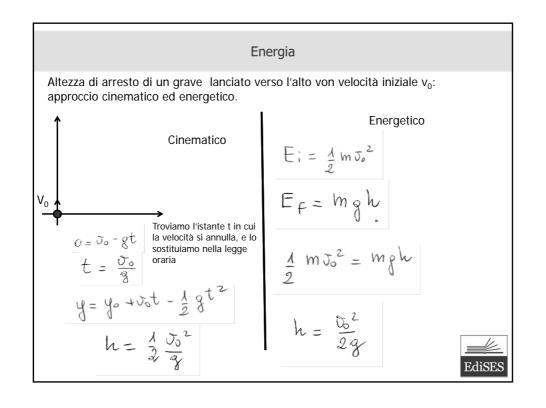
$$\begin{cases}
= \vec{F} \cdot \vec{S} = m\vec{x} \cdot \vec{S} = mas = \frac{1}{2}mJ^{2}
\end{cases}$$

J= 120 S

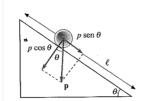
Stesso risultato con a=q e s=h




Forze conservative:


- •Forze costanti, come ad esempio la forza peso.
- •Forze radiali, i.e. dirette verso un punto fisso e dipendenti da 1/r2 (forza di gravità).
- •Forze elastiche (F=-kx).

Forze dissipative: forza di attrito (lavoro sempre negativo).



Velocità finale di un corpo che scende lungo un piano inclinato con velocità iniziale nulla

F= m @ Surð 2° legge di Newton scritta lungo un asse parallelo al piano

$$\mathcal{I}_{\mu}^{2} = 2\alpha_{\mu}(\ell) = 2\beta \text{ fend } \ell$$

Conservazione dell'energia

$$E_2 = \frac{1}{2} m \sigma_{11}^2$$

$$\frac{1}{2}m\sigma_{ii}^{2} = mgl fln \sigma$$

$$\sigma_{ii}^{2} = 20 fln \sigma$$

Energia

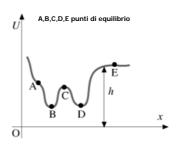
Potenza=rapporto tra lavoro compiuto da una forza e il tempo impiegato per compierlo

$$W = \frac{L}{\Delta t}$$

$$W = \frac{L}{\Delta t} = \frac{\vec{F} \cdot \Delta \vec{s}}{\Delta t} = \vec{F} \cdot \frac{\Delta \vec{s}}{\Delta t} = \vec{F} \cdot \vec{S}$$

Unità di misura watt (W)=1joule/s nel sistema MKS e erg/s nel sistema cgs. Unità di misura pratica il cavallo vapore 1 hp=735 W

Energia Potenziale e Forza


Ipotesi: forza applicata lungo l'asse x

Lavoro=
$$F \triangle X = U(A) - U(B) = - \triangle U$$

$$F = -\frac{du}{dx}$$

Il vettore che ha come componenti le derivate di una funzione si chiama gradiente della funzione.

Figura 2.21

L'energia potenziale U di un oggetto posto nel campo gravitazionale terrestre ha lo stesso andamento della curva di livello, essendo U=mgh.

Scannicchio
Fisica Biomed
EdiSES

