11.6 Exercises - Part 6

(Published on January 3, solutions to be submitted January 19, 2017.)

Exercise 21. Let Λ be a finite-dimensional algebra over an algebraically closed field. Let M and N be Λ -modules and $f: M \to N$ be a minimal right almost split map.

- (a) Show that N is indecomposable.
- (b) Show that f is not a split monomorphism.
- (c) Suppose there exists a module L and morphisms $f_1: M \to L$ and $f_2: L \to N$ such that $f = f_2 f_1$ and f_2 is not a split epimorphism. Show that f_1 is a split monomorphism.
- (d) Conclude that f is an irreducible morphism.

Exercise 22. Using the knitting algorithm on dimension vectors, compute the following.

- (a) The AR quiver of the path algebra of the quiver $1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5$.
- (b) The AR quiver of the first 4 inverse AR translates of the indecomposable projective modules for the path algebra of the quiver 2.

 $1 \xrightarrow{2} 3$

Exercise 23. Let $K_0(\Lambda)$ be the Grothendieck group of Λ , i.e. the free abelian group on isomorphism classes [M] of modules $M \in \Lambda$ -mod subject to the relations [L] = [M] + [N] for each short exact sequence $0 \to M \to L \to N \to 0$ in Λ -mod.

- (a) Show the set $\{[S_1], \ldots, [S_n]\}$, where the S_i are the simple left Λ -modules, generates $K_0(\Lambda)$. (Hint: For any $M \in \Lambda$ -mod consider a composition series and use the additivity of the dimension vector on short exact sequences.)
- (b) Show that the set $\{[S_1], \ldots, [S_n]\}$ is \mathbb{Z} -linearly independent in $K_0(\Lambda)$ and deduce that $\underline{\dim}: K_0(\Lambda) \to \mathbb{Z}^n$ defines an isomorphism of abelian groups.

Exercise 24. Let Q be a quiver without oriented cycles and $\chi \colon \mathbb{Z}^n \to \mathbb{Z}$ be the quadratic form given by $\chi(\mathbf{x}) = \sum_{i \in Q_0} x_i^2 - \sum_{\alpha \in Q_1} x_{s(\alpha)} x_{t(\alpha)}$. Let $M \in \Lambda$ -mod have dimension vector $\underline{\dim} M = \mathbf{d}$. Show that

$$\chi(\mathbf{d}) = \dim \operatorname{Hom}_{\Lambda}(M, M) - \dim \operatorname{Ext}_{\Lambda}^{1}(M, M).$$

(You may assume that any such M has a projective resolution of the form

$$0 \to \bigoplus_{\alpha \in Q_1} P(t(\alpha))^{(d_{s(\alpha)})} \to \bigoplus_{i \in Q_0} P(i)^{(d_i)} \to M \to 0.$$

Hints: Use the long exact Hom-Ext sequence; recall dim Hom_{Λ}(P(i), M) = d_i .)