Electronic
Systems
Design

Synthasis Varitication Tesling Powar Communication

Espresso
Two-level Boolean Minimization

Michele Lora University of Verona
Dep. Computer Science
Tiziano Villa Italy

Slides courtesy of Giuseppe and Luigi Di Guglielmo, Davide Bresolin, Michele Lora and Tiziano Villa

T
Agenda

Introduction

espresso - two-level Boolean minimization

espresso — input file
— Description format
— Keywords

espresso — Options

Excercises

25/10/2016 Design Automation of Embedded Systems 2

T
Introduction

« A Boolean function can be described providing

— ON-set
« OFF-set is the complement of the ON-set
« The DC-set is empty

— ON-set and DC-set
« OFF-set is the complement of the union of ON-set and DC-set

— ON-set and OFF-set

« DC-set is the complement of the union of ON-set and OFF-set

« A Boolean function is completely described by
providing its ON-set, OFF-set and DC-set

25/10/2016 Design Automation of Embedded Systems 3

espresso — U.C. Berkeley

« espresso is a tool developed by the CAD group at
U.C. Berkeley
(software developer: Richard L. Rudell)

e Current release is the #2.3
— Release date 315t January 1988

« espresso iIs a program for two-level Boolean
minimization

25/10/2016 Design Automation of Embedded Systems 4
BEEEEEaaaaaaaaa—_—_ W

BT
espresso - Boolean Minimization

* |[nput:
— A sum-of-product (SOP) representation of a two-valued (or
multi-valued) Boolean function

« Output:
— A minimal equivalent SOP representation

Function
specification

Optimization /

Verification
Formats:
1. equations 1. Function minimization
2. matrix 2. Equivalence checking
3. kiss
25/10/2016 Design Automation of Embedded Systems 5

T
espresso — Basic usage

$> espresso [options] [in_file] [>out file]

« Reads the in_file provided
— Or the standard input if no file is specified

« Writes the minimized results in out file
—standard output if the output is not redirected

25/10/2016 Design Automation of Embedded Systems 6

Example - Adder

sum=ain*bin*cin+ ain*bin*cin+ ain*bin * cin + ain * bin * cin

cout = ain*bin* cin + ain * bin * cin + ain * bin * cin + ain * bin * cin

R O B B B O O

0
1
0
1
1
1
0

25/10/2016

) P, O kB O O K

Design Automation of Embedded Systems

1
1
1
1
0
0
0

R R B 2 O O O

T
espresso - Input file format (syntax)

« espresso accepts specifications described as a
character matrix with keywords embedded
— Keywords specify:
* The size of the matrix
e The format of the function
— Comments:
* Allowed using #
— Whitespaces:
* Blanks, tabs ... are ignored

25/10/2016 Design Automation of Embedded Systems 8

T
espresso — Input file format (semantics)

« Semantics of input part
— The format of the function

e each position in the input matrix corresponds to an
Input variable where:

—"0" implies the corresponding input literal appears complemented
In the product term

—"1" implies the input literal appears uncomplemented in the
product term

—"-"implies the input literal does not appear in the product term

25/10/2016 Design Automation of Embedded Systems 9
BEEEEEaaaaaaaaa—_—_ W

T
espresso — Input file format (semantics)

« Semantics of output part
— Specifying the format of the function
* type f.

— for each output, a 1 means this product term belongs to the ON-
set, and 0 or — means this product term has no meaning for the
value of this function

* type fd.

— for each output, a 1 means this product term belongs to the ON-
set, - |mﬁ.lles this product term belongs to the DC-set and a 0
]Eneaps this product term has no meaning for the value of this

unction

— it is the default type
« type fr:

— for each output, a 1 means this product term belongs to the ON-set, a 0

means this product term belongs to the OFF-set, and a — means this
product term has no meaning for the value of this function

« type fdr:

— for each output, a 1 means this product term belongs to the ON-set, a 0
means this product term belongs to the OFF-set, a — means this product
term belongs to the DC-set, and a ~ implies this product term has no
meaning for the value of this function

25/10/2016 Design Automation of Embedded Systems 10
BEEEEEaaaaaaaaa—_—_ W

espresso — Input file keywords (I)

« The following keywords
are recognized by
espresso.

- .1 [d]
* specifies the number "d" of
input variables

- .0 [d]

« specifies the number “d" of
output variables

- .type [s] |
« specifies the logical
interpretation of the output
part of the character matrix

« this keyword must come
before any product term

e [s] is one of “f' “fd" “fr" “fdr"
— . e

« optionally marks the end of
the description

num of input vars

e.q., ain, bin, cin

i3

num of output functions
#e.g., sum, cout

N\

(.02

{ type fr)
001 10
010 10
100 10
111 11
011 01
101 01
110 01

>

25/10/2016 Design Automation of Embedded Systems

espresso — Input file keywords (II)

-.11lb [s1] [s2] ..
[sn]

« gives the names of the |.ilb ain bin cin B
binary-valued variables |.obsumcout i

« must come after .i and .o type fr

« as many tokens as input 001 10
variables {,g—(l)-g\' 1 8

-.0ob [s1] [s2] .. [sn] \‘*1~-1--i" 11

e gives the names of the 011 (01
output function 101 01

e must come after .i and .0 110 01

« as many tokens as -€
output variables

25/10/2016 Design Automation of Embedded Systems 12

T
espresso - input file keywords (III)

- .phase [bl] [b2] .. [bn]

« specifies the phase of each output
— positive (1) or negative (0)

e must come after .iand .o

« as many tokens as output variables
-.p [d];

« specifies the number [d] of products

« optional

25/10/2016 Design Automation of Embedded Systems 13
BEEEEEaaaaaaaaa—_—_ W

T
espresso - input file keywords (IV)

« Possible to use multi-valued variable
- .symbolic [s@]..[sN] ; [tO] .. [tM] ;
« the binary variables named [s0] thru [sN] must be
considered as a single multiple-valued variable

e variable with 2N parts corresponding to the decodes of
the binary-valued variables

« [sO] is the most significant bit, [sN] is the least significant
bit

« [t0] .. [tm] provide the labels for each decode of [s0] thru
[SN]

—.mv [num_var] [num_bin var] [d1] [dN]
« specifies the number num_var of variables, the number

num_bin_var of binary variables and the size of each of
the multiple-valued variables (d1 through dN)

25/10/2016 Design Automation of Embedded Systems 14

BT
espresso - input file keywords (V)

i4
.03
.ilb ain<1> ain<0> bin<1> bin<0> 0101 010
.0b sum<1> sum<0> cout 0110 011
0111 100
(.symbolic ain<1> ain<0>) 1000 010
g.symbolic bin<1> bin<0>) 1001 011
.symbolic sum<1> sum<0>) 1010 100
1011 101
{00i00 00 0 1100 011
0001 001 1101 100
00i10{01 0 1110 101
0011 011 1111 110
0100 :00}1 e
25/10/2016 Design Automation of Embedded Systems 15

T
espresso - Options (I)

* Interesting options for running espresso are:
- -Dcheck
 checks that ON-set, OFF-set, DC-set are disjoint
- -Dexact
 performs exact minimization (potentially expensive)
— -Dmany
 reads and minimizes all PLA defined into the input
file
- -Dopo

« performs output phase optimization, i.e., reduce the
number of terms needed to implement the function
or its complement

25/10/2016 Design Automation of Embedded Systems 16
BEEEEEaaaaaaaaa—_—_ W

T
espresso — Options (II)

- -Dverify
* checks for Boolean equivalence of two functions
* requires two filenames from command line
- -Dequiv
« identifies output variables which are equivalent
- -Dso

e minimizes each function one at time as a single-
output function

- -epos

« swaps the ON-set and OFF-set of the function after
reading the function

« useful for minimizing the OFF-set of a function

25/10/2016 Design Automation of Embedded Systems 17

BT
Options (III)

- =V "
 verbose debugging details
« " activates all details

- -d
 enables debugging

--0 [type]
« selects the output format

* type can be:
— f: only On-set
— fd: ON-set and DC-set
— fr: ON-set and OFF-set
— fdr: ON-set, OFF-set and DC-set

25/10/2016 Design Automation of Embedded Systems 18
BEEEEEaaaaaaaaa—_—_ W

U.C. Berkeley - Official release

« Official espresso release is available at
http.//embedded.eecs.berkeley.edu/pubs/downlo
ads/espresso/index.htm

— Source code

— Examples
— Man pages for espresso

Berkele

UNIVERSITY OF CALIFORNIA

25/10/2016 Design Automation of Embedded Systems 19

http://embedded.eecs.berkeley.edu/pubs/downloads/espresso/index.htm

BT
Lab configuration for espresso

Before starting:
— Create the installation directory:
e $> mkdir sse_tools

Laboratory computers or Linux x86_64
— Download the binaries from the e-learning in the installation directory
— Unzip it

e $> tar xzfv espresso _binaries.tar.gz

e $> cd espresso

Other unix-based O.S. (support not tested)
— Download the sources from the e-learning in the installation directory
— Unzip it
e $> tar xzfv espresso_srcs.tar.gz
— Compile it
e $> cd espresso && make
Final steps:
— Export the path to the executable
e $> export PATH=$PATH:$(pwd)/bin
— If you want, you can add the export of the path to your .bashrc file
Windows:
— .exe available on the e-learning

25/10/2016 Design Automation of Embedded Systems 20
BEEEEEaaaaaaaaa—_—_ W

Man pages

« Man pages are available

— http://user.engineering.uiowa.edu/~switchin/OldSwitch
Ing/espresso.5.html

« PLA format manual (espresso.5)
—see examples
« #1, a two bit adder
o #2, multi-valued function

« #3, multi-valued function setup for kiss-style
minimization

 espresso usage manual (espresso.1)
— List options by espresso -h

25/10/2016 Design Automation of Embedded Systems 21
BEEEEEaaaaaaaaa—_—_ W

http://user.engineering.uiowa.edu/~switchin/OldSwitching/espresso.5.html

BT
Exercise 1

« The Indian society of Natchez, who lived in North America, was
divided into four groups: Suns, Nobles, Honorables, Stinkards.
In this society, marriages were allowed according to specific rules,
and the corresponding progeny belongs to a particular group as
described in the following table:

Mother _____|Father _____|Progeny

Sun Stinkard Sun

Noble Stinkard Noble
Honorable Stinkard Honorable
Stinkard Sun Noble
Stinkard Noble Honorable
Stinkard Honorable Stinkard
Stinkard Stinkard Stinkard

e Other combinations are not allowed

25/10/2016 Design Automation of Embedded Systems 22
L ’™™™’™'™’'’*™™’™*'’'’'*'’'’'’'’'’'’'’*'*'*’*'’'’*™™'S’''*'’*’*’*=’SS**''’*'**SSSSSSS'''SSSEGEhhSS

P
Exercise 2 (I)

« Formulate the minimum map coloring problem
(coloring a map with the minimum number of
colors such that adjacent regions don't have the
same color) as a logic minimization problem.

« Apply your formulation to the following map and
use espresso to find a minimum coloring for the
map.

25/10/2016 Design Automation of Embedded Systems 23

Exercise 2 (II)

m

g
h

n

25/10/2016 Design Automation of Embedded Systems 24

