
2

Bolchini · Ferrandi · Fummi

Contents

➤ The synthesis process
➤ VHDL as a standard for synthesis
➤ Synthesis aspects and guidelines
➤ Combinational synthesis
➤ Sequential synthesis

3

Bolchini · Ferrandi · Fummi

Synthesis Process - 1

➤ Process of turning an abstract, technology
independent, text description of a design
into gates.

➤ Two crucial steps:
➤ Translation

acts as the automated bridge between two levels
of abstraction

➤ Optimization
technology-specific design transformation to
meet user's goals for the given design.



4

Bolchini · Ferrandi · Fummi

Synthesis Process - 2

entity XGEB is
   port(A, B, C, S0, S1: in BIT;
Z: out BIT);

   function XREF(A, B, S: BIT) return BIT is
   begin
if (S=‘1’) then
   return (A xor B);
else
   return (A or B);
end if;
   end;

end XGEN;

architecture ARCH of XGEN is
begin
   Z <= XREF(A, B, S1) when (S0 = ‘1’);
end;

Design
Constraints  ➠

Technology
Library     ➠

Optimization

Translation

Synthesis

5

Bolchini · Ferrandi · Fummi

Synthesis Process - 3

➤ Translation
➤ In general, from an algorithmic-like description

of the behavior to the register transfer level
(RTL) to gate level.

➤ Optimization
➤ Introduction of user's constraints.

➤ Significant aspects: performance, area and test.



6

Bolchini · Ferrandi · Fummi

Synthesis Process - 4

➤ The logic synthesis process begins with a
validated behavioral design description.

➤ The design is translated into a design
composed of:
➤ control part, and
➤ data path

➤ At the RTL level, the design description has
been partitioned down to the
implementation primitives of ALUs, ROMs,
RAMs, data-path and control functions.

7

Bolchini · Ferrandi · Fummi

Synthesis Process - 5

➤ A second component to synthesis design policy in
the VHDL style that has been adopted for the
specification of the device.

➤ Different VHDL descriptions of the same
functionality can yield radically different results.

➤ The more the VHDL description yields an
implementation (structural description style) the
easier the translation phase is; the higher the
abstraction level, the more fundamental the
translation phase is.



8

Bolchini · Ferrandi · Fummi

Synthesis Process - 6

➤ VHDL was aimed at simulation purposes.
➤ The semantic is uniquely defined.

➤ The same code processed with two different
commercial simulators will provide the same results.

➤ The simulation task requires no "interpretation" of
the code.

➤ The semantics of VHDL is expressed in terms
of a canonical simulator and not in terms of
equivalent hardware constructions.

9

Bolchini · Ferrandi · Fummi

Synthesis semantics

➤ VHDL lacks of synthesis semantics.
➤ The synthesis task requires an "interpretation"

of the code to determine which hardware device
can realize the desired function.

➤ Being synthesis a difficult task, commercial
tools usually restrict the set of accepted
statements to a tool-dependent subset.
➤ No portability

➤ No reusability



10

Bolchini · Ferrandi · Fummi

Synthesis semantics

➤ To obtain satisfable results from the synthesis
process, the user has to 'deeply' know the
commercial tool.

➤ A basic idea of what VHDL constructs lead to is
also required.

➤ A "Guide to VHDL synthesized constructs" is
useful for selecting the appropriate constructs and
having a general feeling of the possible results.

Level-0 VHDL Synthesis Subset

11

Bolchini · Ferrandi · Fummi

Synthesis semantics

➤ VHDL Synthesis Subset
➤ definition of a stable VHDL synthesis usage

guide

➤ allow portability

➤ interchange format between tools, designers,
companies …

➤ allow VHDL to be used as an RT/logic
specification language

➤ facilitate reusability of descriptions



12

Bolchini · Ferrandi · Fummi

Synthesis semantics

➤ Stable VHDL synthesis usage guide
➤ It is important to understand how the tool

interprets the VHDL source code

➤ It is useful to agree on what the expected results
of the synthesis of the VHDL source code
should be:

➤ less confusion

➤ no misunderstanding

13

Bolchini · Ferrandi · Fummi

Synthesis semantics

➤ VHDL portability

➤ Usually there are several possible styles to
describe a behavior:
➤ It is advisable to select the statement which is more

widely adopted.

6XSSRUWHG

9+'/ VWDWHPHQWV

722/ =

722/ <

722/ ;



14

Bolchini · Ferrandi · Fummi

VHDL styles

➤ Different “styles” describing the same
behavior may lead to different realizations.

➤ An example: Full Adder
➤ behavioral

➤ data flow

➤ structural

15

Bolchini · Ferrandi · Fummi

VHDL styles: behavioral - 1

architecture  FA_BEH of  FULL_ADDER is

begin

   process  (X, Y, CIN)

      variable  BV: BIT_VECTOR(1 to 3);

      variable  NUM: INTEGER range 0 to 3;

      variable  STemp, CTemp: BIT;

    begin
          NUM := 0;

          BV := X & Y & CIN;

          for  I in 1 to 3 loop

                if  (BV(I) = ‘1’) then

                       NUM := NUM + 1;

                end  if;

          end  loop;



16

Bolchini · Ferrandi · Fummi

VHDL styles: behavioral - 2

case  NUM is

            when  0 => CTemp:=‘0’; STemp:=‘0’;

            when  1 => CTemp:=‘0’; STemp:=‘1’;

            when  2 => CTemp:=‘1’; STemp:=‘0’;

            when 3 => CTemp:=‘1’; STemp:=‘1’;

        end  case ;

        SUM <= STemp ;

        COUT <= CTemp ;

     end  process ;

end  FA_BEH;

17

Bolchini · Ferrandi · Fummi

VHDL styles: behavioral - 3



18

Bolchini · Ferrandi · Fummi

VHDL behavioral - 4

19

Bolchini · Ferrandi · Fummi

VHDL styles: data flow - 1

architecture  FA_BOOL of  FULL_ADDER is

signal  S1, S2, S3: BIT ;

begin

S1 <= X xor Y ;

SUM <= S1 xor CIN after 1 ns;

S2 <= X and Y ;

      S3 <= S1 and CIN after 1 ns;

COUT <= S2 or S3 after 1 ns;

end FA_BOOL;



20

Bolchini · Ferrandi · Fummi

VHDL styles: data flow - 2

21

Bolchini · Ferrandi · Fummi

VHDL styles: structural - 1

architecture  FA_ST of FULL_ADDER is

     component  HALF_A

        port (A, B: in BIT;

             S, C: out BIT);

     end component ;

     component  OR_GATE

        port (A, B: in BIT;
             O: out BIT);

     end component ;

     signal  C1, S1, C2: BIT;

begin

  HA1: HALF_A port  map (A=>X, B=>Y, S=>S1, C=>C1);

  HA2: HALF_A port  map (S1, CIN, SUM, C2);

  OR1: OR_GATE port  map (C1, C2, COUT);

end  FA_ST;



22

Bolchini · Ferrandi · Fummi

VHDL styles: structural - 2

23

Bolchini · Ferrandi · Fummi

Some considerations

➤ General aspects of some elements in
relation with VHDL synthesis:
➤ Vectors

➤ Arithmetic, Logical & Relation operands

➤ Subtypes, slices and functions



24

Bolchini · Ferrandi · Fummi

VHDL: vectors

entity  ex1 is
port (A, B, C: in bit_vector(1 to 5);

  Z: out bit_vector(1 to 5));

end  ex1;

architecture  arch of  ex1 is
begin

process(A,B,C)

variable TEMP: bit_vector(1 to 5);

begin

TEMP := A and B;

Z <= TEMP xor C;

end process;

end ;

Bit-to-bit operations

25

Bolchini · Ferrandi · Fummi

VHDL: Turning Integer into
Vectors

➤ Declare range for INTEGER objects for
implementation of the minimum possible
bits.

➤ If a signal (or port) or variable is declared to
be of type INTEGER without specifying a
range, a tool may implement the object
using a full 32 bits.
➤ The automatic tool warns the user of an

unconstrained signal/variable declaration



26

Bolchini · Ferrandi · Fummi

VHDL: Turning Integer into
Vectors - 1

27

Bolchini · Ferrandi · Fummi

VHDL: Turning Integer into
Vectors - 2



28

Bolchini · Ferrandi · Fummi

VHDL: vector indexes - 1

entity EX is

port(A: in BIT_VECTOR(0 to 3);

     OU : out BIT) ;

end EX ;

architecture EX_1 of EX is

begin

OU <= A(2) ;

end EX_1 ;

29

Bolchini · Ferrandi · Fummi

VHDL: vector indexes - 2

entity  EX_VAR is

  port (A : in BIT_VECTOR(0 to 7) ;

      INDEX : in INTEGER range 0 to 7;

      OUTPUT : out BIT) ;

end  EX_VAR ;

architecture  EX_1 of EX_VAR is

begin

     OUTPUT <= A(INDEX) ;

end  EX_1 ;


