Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
1st Semester | Oct 1, 2009 | Jan 31, 2010 |
2nd Semester | Mar 1, 2010 | Jun 15, 2010 |
Session | From | To |
---|---|---|
Sessione straordinaria | Feb 1, 2010 | Feb 28, 2010 |
Sessione estiva | Jun 16, 2010 | Jul 31, 2010 |
Sessione autunnale | Sep 1, 2010 | Sep 30, 2010 |
Session | From | To |
---|---|---|
Sessione autunnale | Oct 14, 2009 | Oct 14, 2009 |
Sessione straordinaria | Dec 16, 2009 | Dec 16, 2009 |
Sessione invernale | Mar 10, 2010 | Mar 10, 2010 |
Sessione estiva | Jul 21, 2010 | Jul 21, 2010 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2009 | Nov 1, 2009 |
Festa dell'Immacolata Concezione | Dec 8, 2009 | Dec 8, 2009 |
Vacanze Natalizie | Dec 21, 2009 | Jan 6, 2010 |
Vacanze Pasquali | Apr 2, 2010 | Apr 6, 2010 |
Festa della Liberazione | Apr 25, 2010 | Apr 25, 2010 |
Festa del Lavoro | May 1, 2010 | May 1, 2010 |
Festa del Santo Patrono | May 21, 2010 | May 21, 2010 |
Festa della Repubblica | Jun 2, 2010 | Jun 2, 2010 |
Vacanze Estive | Aug 9, 2010 | Aug 15, 2010 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Cecchi Franco
Gnaccarini Claudio
Marastoni Corrado
Mazzi Ulderico
Minelli Ida Germana

Monaco Ugo Luigi
Nodari Luca
Spena Angelo

Vallini Giovanni
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2010/2011
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2011/2012
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Molecular biology (2010/2011)
Teaching code
4S00800
Credits
12
Coordinatore
Language
Italian
Scientific Disciplinary Sector (SSD)
BIO/11 - MOLECULAR BIOLOGY
The teaching is organized as follows:
Teoria
Laboratorio
Learning outcomes
The aim of this course is to give the students the basic knowledge of the molecular mechanisms concerning transmission, variation and expression of the genetic information.
Program
Theory:
-> Genetic information and informational molecules
General introduction and historical hints. The chemical structure of DNA and RNA. Three dimensional structure of DNA. Physico-chemical properties of DNA.
-> Molecular Biology techniques
Agarose gel electrophoresis. Nucleic acid hybridization. Polymerase chain reaction (PCR). Restriction endonucleases. Cloning and sub-cloning. gene expression systems.
-> DNA, RNA and gene structure
Definition of gene coding and regulatory regions. From genes to proteins; messenger RNA, transfer RNA and ribosomal RNA.
-> Genome organization and evolution
DNA content and number of genes. Mutations, DNA rearrangement and genome evolution. The organelle genomes. Interrupted genes; introns. cDNA. Gene families and duplication. DNA repeats.
-> Transposable elements
Transposition mechanisms and control. Retroviruses and retrotransposones. Transposons.
-> Chromatin and chromosomes
Nucleosomes, histones and their modifications. Higher organization levels of chromatin. Heterochromatin and euchromatin. Eukaryotic chromosomes, telomeres and centromeres.
-> DNA replication
DNA polymerases. Proofreading activity of DNA polymerases. Replication mechanism in bacteria and eukaryotic cells.
-> Introns and RNA splicing
Features of spliceosomal introns. Spliceosome and splicing mechanism. Alternative splicing and trans-splicing. Other kinds of introns: group I and group II introns and tRNA introns. The intron movement. RNA editing. Ribozymes and riboswitch.
-> DNA mutation and repair
Spontaneous mutations and mutations caused by physical and chemical mutagens. Pre- and post-replicative repair systems. Recombination in the immunity system cells. Approaches to homologous recombination.
-> Regulation of gene expression
Bacterial promoters. The operon. Activators, repressors and coactivators. Signal transductions and two component regulation systems. Eukaryotic promoters. Activators, repressors and coactivators. Gene expression and chromatin modifications. Epigenetic mechanisms.
-> RNAs and transcription
Different types of RNA: synthesis and maturation. Bacterial RNA polymerase. Sigma factors. Eukaryotic RNA polymerases. Eukaryotic mRNAs: capping, polyadenylation, cytoplasmic localization. The transcription process in bacteria and in eukaryotic cells.
-> Translation
Ribosomes. tRNA structure and function. Aminoacyl-tRNA synthesis. Initiation in bacteria and eukaryotic cells. Polypeptide chain synthesis and translation end. Regulation of translation.
-> Protein localization.
One credit of the course (corresponding to 8 hours) will be kept for the students to discuss an important topic chosen from the research literature in Molecular Biology.
Introduction to the Laboratory Course:
-> Nucleic acids isolation: basis, comparison of several extraction protocols, nucleic acids isolation troubleshooting.
-> Nucleic acids electrophoresis: agarose gels, polyacrylamide gels, denaturing and non-denaturing gels, Pulsed-field gel electrophoresis.
-> Spectrophotometric quantitation of isolated nucleic acids.
-> PCR
1.What is PCR?
2. Reagents: efficiency, specificity, fidelity
3. PCR cycle. Final number of copies of the target sequence
4.Amplifying the correct product: detection and analysis of PCR products, how to avoid contamination (uracil N-glycosylase, UV, enzymatic treatment), hot start, nested PCR
5. Techniques and applications: 5’RACE-PCR and 3’RACE-PCR, RT-PCR, PCR mutagenesis (deletion of sequences, base substitutions, insertion mutagenesis), modification of PCR products (introduction of restriction sites, adding promoters and ribosome-binding sites), joining overlapping PCR products, quantitative PCR
Experiments:
-> Genomic DNA extraction from different plant tissues. Amplification by PCR of selected genes and visualization of PCR products on agarose gels.
-> Total RNA extraction from prokaryotes (bacteria) and eukaryotes (plants), spectrophotometric quantitation, denaturing gels. Synthesis of cDNA and visualization of cDNA population on gel. 5’ RACE-PCR and 3’ RACE-PCR.
Bibliography
Activity | Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|---|
Teoria | WATSON James D , BAKER Tania A , BELL Stephen P , GANN Alexander , LEVINE Michael , LOSICK Richard | Biologia molecolare del gene (Edizione 7) | Zanichelli | 2015 | 978-88-08-36480-7 | |
Teoria | LEWIN Benjamin | Il Gene VIII | Zanichelli | 2006 | 978-8808-17902-9 | |
Teoria | Harvey Lodish, Chris A. Kaiser, Anthony Bretscher, Angelika Amon, Arnold Berk, Monty Krieger, Hidde Ploegh and Matthew P. Scott | Molecular Cell Biology (Edizione 7) | Freeman | 2012 | 1464102325 | |
Teoria | Alberts et al. | The Cell (Edizione 5) | Garland Science | 2007 | 978-0-8153-4105-5 |
Examination Methods
Oral examination.
An individual final report, concerning the Laboratory Course, must be prepared and positively evaluated before taking the final oral examination.
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.
Graduation
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Multifunctional organic-inorganic hybrid nanomaterials for applications in Biotechnology and Green Chemistry | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. | Various topics |
Risposte trascrittomiche a sollecitazioni ambientali in vite | Various topics |
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite | Various topics |
Attendance
As stated in the Teaching Regulations for the A.Y. 2022/2023, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module.
Please refer to the Crisis Unit's latest updates for the mode of teaching.