Studying at the University of Verona

A.A. 2012/2013

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2012 Jan 31, 2013
II semestre Mar 4, 2013 Jun 14, 2013
Exam sessions
Session From To
Sessione straordinaria Feb 4, 2013 Feb 28, 2013
Sessione estiva Jun 17, 2013 Jul 31, 2013
Sessione autunnale Sep 2, 2013 Sep 30, 2013
Degree sessions
Session From To
Sessione autunnale Oct 16, 2012 Oct 16, 2012
Sessione straordinaria Dec 10, 2012 Dec 10, 2012
Sessione invernale Mar 19, 2013 Mar 19, 2013
Sessione estiva Jul 22, 2013 Jul 22, 2013
Holidays
Period From To
Festa di Ognissanti Nov 1, 2012 Nov 1, 2012
Festa dell'Immacolata Concezione Dec 8, 2012 Dec 8, 2012
Vacanze di Natale Dec 21, 2012 Jan 6, 2013
Vacanze di Pasqua Mar 29, 2013 Apr 2, 2013
Festa della Liberazione Apr 25, 2013 Apr 25, 2013
Festa del Lavoro May 1, 2013 May 1, 2013
Festa del Santo Patrono di Verona - San Zeno May 21, 2013 May 21, 2013
Festa della Repubblica Jun 2, 2013 Jun 2, 2013
Vacanze estive Aug 9, 2013 Aug 16, 2013

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C F G K M O S Z

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Ferro Ruggero

ruggero.ferro@univr.it 045 802 7909

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Monti Francesca

francesca.monti@univr.it 045 802 7910

Morato Laura Maria

laura.morato@univr.it 045 802 7904

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Zampieri Gaetano

gaetano.zampieri@univr.it +39 045 8027979

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

TeachingsCreditsTAFSSD
One course chosen from the following
One course chosen from the following
One course chosen from the following
TeachingsCreditsTAFSSD
Prova finale
32
E
(-)

1° Anno

TeachingsCreditsTAFSSD
One course chosen from the following
One course chosen from the following
One course chosen from the following

2° Anno

TeachingsCreditsTAFSSD
Prova finale
32
E
(-)
Teachings Credits TAF SSD
Between the years: 1°- 2°One course chosen from the following
6
C
(MAT/05)
Between the years: 1°- 2°
Other activities
4
F
-
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S001100

Credits

12

Coordinatore

Gaetano Zampieri

Scientific Disciplinary Sector (SSD)

MAT/03 - GEOMETRY

Language of instruction

Italian

The teaching is organized as follows:

Modulo 1

Credits

6

Period

I semestre

Academic staff

Mauro Spera

Modulo 2

Credits

6

Period

II semestre

Academic staff

Gaetano Zampieri

???OrarioLezioni???

Learning outcomes

Module: 1
Learning objectives:


The course provides an introduction to differentiable manifolds
and Riemannian geometry; it will possess a quite concrete character and will be based
on examples emerging from other areas of mathematics as well.

-------

Program

Module: 1
Syllabus:
Multilinear algebra.
Differentiable manifolds.
Lie groups.
Tensor calculus. Lie group actions on manifolds and their orbit spaces.
Riemannian manifolds.
Levi-Civita connection.
Curvature tensors (Riemann, sectional, Ricci, scalar).
Geodesics and their variational aspects.
Exponential map.
Riemannian geometry of Lie groups.


Module: 2

First Part:

0) Integration on manifolds and Stokes Theorem

1) Riemannian Geometry: connections, parallel transport, curvature
tensors, Levi-Civita connection, geodesics and applications (Chap. 1 and 2
of Chavel's Book "Riemannian Geometry, a modern Introduction" (2nd
Edition, Cambridge University Ppress, 2006).

2) Morse theory: Morse lemma and applications ( J. Milnor "Morse Theory" ,
Annals of Mathematics Studies, Princeton University Press).


3) De Rham cohomology and applications (Chap.1 of Bott, Tu "Differential
Forms in Algebraic Topology" , Graduate Texts in Mathematics, 82).




-------

Examination Methods

Exam methods (1st module): written test, immediately followed by an oral exam. The final grade will be assigned after completion of the second module.

Teaching materials

Tipologia di Attività formativa D e F

Course not yet included

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Attività didattiche alternative

Allegati

Title Info File
pdf Courses replacement 113 KB, 22/07/21 
pdf Learning Agreement UNITN - UNIVR 44 KB, 22/07/21 

Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!


Gestione carriere


Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

Graduation

Allegati

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.