Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 3, 2011 Jan 31, 2012
II semestre Mar 1, 2012 Jun 15, 2012
Exam sessions
Session From To
Sessione straordinaria Feb 1, 2012 Feb 29, 2012
Sessione estiva Jun 18, 2012 Jul 31, 2012
Sessione autunnale Sep 3, 2012 Sep 28, 2012
Degree sessions
Session From To
Sessione autunnale Oct 18, 2011 Oct 18, 2011
Sessione straordinaria Dec 14, 2011 Dec 14, 2011
Sessione invernale Mar 20, 2012 Mar 20, 2012
Sessione estiva Jul 23, 2012 Jul 23, 2012
Holidays
Period From To
Festa di Ognissanti Nov 1, 2011 Nov 1, 2011
Festa dell'Immacolata Concezione Dec 8, 2011 Dec 8, 2011
Vacanze Natalizie Dec 22, 2011 Jan 6, 2012
Vacanze Pasquali Apr 5, 2012 Apr 10, 2012
Festa della Liberazione Apr 25, 2012 Apr 25, 2012
Festa del Lavoro May 1, 2012 May 1, 2012
Festa del Patrono di Verona S. Zeno May 21, 2012 May 21, 2012
Festa della Repubblica Jun 2, 2012 Jun 2, 2012
Vacanze estive Aug 8, 2012 Aug 15, 2012

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 3470157539

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Cuneo Alejandro Javier

symbol email alejando.cuneo@univr.it

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Palma Federico

symbol email federico.dipalma@univr.it symbol phone-number +39 045 8027074

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Ferro Ruggero

symbol email ruggero.ferro@univr.it symbol phone-number 045 802 7909

Guerriero Massimo

symbol email massimo.guerriero@univr.it

Magazzini Laura

symbol email laura.magazzini@univr.it symbol phone-number 045 8028525

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it symbol phone-number +39 045 8027031

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number 045 802 8241

Menon Martina

symbol email martina.menon@univr.it

Morato Laura Maria

symbol email laura.morato@univr.it symbol phone-number 045 802 7904

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Residori Stefania

symbol email stefania.residori@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 049-8027932

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 8027979

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

activated in the A.Y. 2012/2013
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
activated in the A.Y. 2013/2014
ModulesCreditsTAFSSD
6
C
MAT/06 ,SECS-P/05
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Prova finale
6
E
-

2° Year activated in the A.Y. 2012/2013

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01

3° Year activated in the A.Y. 2013/2014

ModulesCreditsTAFSSD
6
C
MAT/06 ,SECS-P/05
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Ulteriori conoscenze
6
F
-
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00254

Credits

6

Coordinatore

Laura Maria Morato

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

The teaching is organized as follows:

Catene di Markov in tempo discreto

Credits

3

Period

I semestre

Academic staff

Laura Maria Morato

Analisi di serie temporali

Credits

2

Period

I semestre

Academic staff

Federico Di Palma

Esercitazioni

Credits

1

Period

I semestre

Academic staff

Marco Caliari

Learning outcomes

Module 1 ( Discrete time Markov Chains )

Basics of the theory of discrete time Markov chain with finite or countable state space and examples of application.


Module 2 (Practice session of Stochastic systems)

Approximation and computation of invariant probabilities, Metropolis algorithm, simulation of queues and renewal processes with the use of Matlab.

Module 3 Introduction to Time Series analysis: the lessons aims to provide to the student a general framework to analyze time series as the outcome of a discrete time model fed by a white noise and an exogenous input. The lesson are completed by the use of a dedicated software in order to apply the theoretical aspects.

Program

Module 1
Markov chains with finite space state:
Definitions, transition matrix, transition probability in n steps, Chapman -Kolmogorov equation, finite joint densities, Canonocal space and Kolmogorov theorem (without proof).
State classification, invariant probabilities, Markov-Kakutani theorem, example of gambler's ruin, regular chains, criterion, limit probabilities and Markov theorem, reversible chains, Metropolis algorithm and Simulated annealing, numerical generation of a discrete random variable and algorithm for generation an omogeneus Markov chains with finite state space.

Markov chains with countable space state:
Equivalent definitions of transient and recurrent state, positive recurrence, periodicity, solidarity property, canonical decomposition of the state space, invariant measures, existence theorem, example of the unlimited random walk. Ergodicity and limit theorems.

Elements of Martingales associated to discrete time Markov chains:
Natural filtration, stopping times, conditional expectation given a random variable, strong Markov property, martingales. Optional stopping Theorem, example of gambler's ruin.

Module 2 Approximation and computation of invariant probabilities, Metropolis algorithm, simulation of queues with the use of Matlab.

Module 3 Elements of time series analysis :
Main scope of time series analysis: modelling, prediction and simulation.
Identification problem main components: a priori Knowledge, experiment design, goodness criteria, model, filtering and validation.
Model: main variables and correspondent schema. (AR, ARX, ARMA, output-error).
Goodness Criteria: least square, Maximum Likelihood, Maximum a posteriori.
Filtering: Linear parameter model, frequency filtering.
Matlab : main purpose and examples.

Bibliography

Reference texts
Activity Author Title Publishing house Year ISBN Notes
Analisi di serie temporali LJung System Identification, Theory for the User (Edizione 2) Prentice Hall PTR 1999

Examination Methods

Module 1 Oral exam

Module 2 Discussion of the solution of given homeworks.

Module 3 Written exam

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Attachments

Title Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Erasmus+ and other experiences abroad


Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources