Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 3, 2011 Jan 31, 2012
II semestre Mar 1, 2012 Jun 15, 2012
Exam sessions
Session From To
Sessione straordinaria Feb 1, 2012 Feb 29, 2012
Sessione estiva Jun 18, 2012 Jul 31, 2012
Sessione autunnale Sep 3, 2012 Sep 28, 2012
Degree sessions
Session From To
Sessione autunnale Oct 18, 2011 Oct 18, 2011
Sessione straordinaria Dec 14, 2011 Dec 14, 2011
Sessione invernale Mar 20, 2012 Mar 20, 2012
Sessione estiva Jul 23, 2012 Jul 23, 2012
Holidays
Period From To
Festa di Ognissanti Nov 1, 2011 Nov 1, 2011
Festa dell'Immacolata Concezione Dec 8, 2011 Dec 8, 2011
Vacanze Natalizie Dec 22, 2011 Jan 6, 2012
Vacanze Pasquali Apr 5, 2012 Apr 10, 2012
Festa della Liberazione Apr 25, 2012 Apr 25, 2012
Festa del Lavoro May 1, 2012 May 1, 2012
Festa del Patrono di Verona S. Zeno May 21, 2012 May 21, 2012
Festa della Repubblica Jun 2, 2012 Jun 2, 2012
Vacanze estive Aug 8, 2012 Aug 15, 2012

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D F M O R S Z

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number 0458027935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it symbol phone-number +39 045 802 7987

Boscaini Maurizio

symbol email maurizio.boscaini@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Ferro Ruggero

symbol email ruggero.ferro@univr.it symbol phone-number 045 802 7909
foto,  June 25, 2020

Magazzini Laura

symbol email laura.magazzini@univr.it symbol phone-number 045 8028525

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Mantese Francesca

symbol email francesca.mantese@univr.it

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number +390458028241

Menon Martina

symbol email martina.menon@univr.it

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number 045 802 7910

Morato Laura Maria

symbol email laura.morato@univr.it symbol phone-number 045 802 7904

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number 045 802 7986

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 8027088

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number 045-8027976

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

symbol email marco.squassina@univr.it symbol phone-number +39 045 802 7913

Zampieri Gaetano

symbol email gaetano.zampieri@univr.it symbol phone-number +39 045 8027979

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2012/2013

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01

3° Year  activated in the A.Y. 2013/2014

ModulesCreditsTAFSSD
6
C
MAT/06 ,SECS-P/05
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Prova finale
6
E
-
activated in the A.Y. 2012/2013
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti due insegnamenti
6
C
SECS-P/01
activated in the A.Y. 2013/2014
ModulesCreditsTAFSSD
6
C
MAT/06 ,SECS-P/05
Uno da 12 cfu o due da 6 cfu tra i seguenti tre insegnamenti
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Ulteriori conoscenze
6
F
-
Between the years: 1°- 2°- 3°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02754

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/07 - MATHEMATICAL PHYSICS

Period

II semestre dal Mar 4, 2013 al Jun 14, 2013.

Learning outcomes

The aim of the course is to deal with the qualitative analysis of
autonomous ordinary differential equations and to introduce to the
theory of continuous dynamical systems. The student should reach the
knowledge of the theory with reasonable depth, and also some working
ability of the examples.

Program

Flows. Orbits and invariant sets. First integrals. Vector fields with the same orbits. The conservative simple pendulum. The fish. Predator-prey. Bounded vector fields. Solutions in compact sets. Alfa and omega-limit sets.
Changes of variables. Local rectification theorem. Linear vector fields.
Invariance principle. Lyapunov stability theorem. Asymptotic stability
and instability from the linearization. Stability for the conservative and dissipative pendulum. Flows on the circle. Flows on the cylinder. Polar coordinates. Limit cycles. Uniform motion on the 2-torus. Systems of harmonic oscillators. A 2-torus as omega-limit of a 3-dimensional flow.

Examination Methods

Oral examination.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Teaching materials e documents

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and soon also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 29/07/21
File pdf 2. How to write a thesis pdf, it, 31 KB, 29/07/21
File pdf 5. Regolamento tesi (valido da luglio 2022) pdf, it, 171 KB, 17/02/22

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery Various topics
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives Various topics
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.


Career management


Student login and resources


Erasmus+ and other experiences abroad