Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2015/2016

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Attivato nell'A.A. 2015/2016
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
Un insegnamento a scelta
Tra gli anni: 1°- 2°
Altre attività formative
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S001109

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA

L'insegnamento è organizzato come segue:

Teoria 2

Crediti

4

Periodo

I sem.

Esercitazioni

Crediti

1

Periodo

I sem.

Teoria 1

Crediti

1

Periodo

I sem.

Obiettivi formativi

Il corso di Mathematical Finance per la Laurea Magistrale internazionalizzata (erogata completamente in lingua Inglese) si propone di introdurre i principali concetti del calcolo stocastico a tempo discreto e continuo nell'ambito della moderna teoria dei mercati finanziari. In particolare lo scopo fondamentale del corso è quello di fornire gli strumenti matematici propri del setting del calcolo stocastico di Itȏ per la determinazione, lo studio e l'analisi di modelli per azioni e/o tassi d'interesse determinati da equazioni differenziali stocastiche con rumore Browniano. Ingredienti fondamentali sono le basi della teoria delle martingale a tempo continuo, i teoremi Girsanov e Faynman-Kac e le loro applicazioni alla teoria dell'option pricing con specifici esempi in ambito azionario, ivi comprendendo modelli di tipo path-dependent, e nell'ambito dei modelli per tassi d'interesse.

Programma

Modelli a tempo discreto
• Prodotti finanziari, processi valore, strategie di copertura, completezza, arbitraggio
• Teoremi fondamentali dell' asset pricing (a tempo discreto)

Il modello binomiale per l' Asset Pricing
• modelli binomiali uno/multi periodali
• Interludio: passeggiate casuali e loro principali proprietà (passegguate casuali simmetriche, riscalate, proprietà martingala e variazione quaratica)
• Derivazione dell'equazione i Black e Schloes (limite a tempo continuo

Moto Browniano (BM)
• riassunto delle principali proprietà del MB: filtrazione generata, proprietà martingala, variazione quadratica, volatilità proprietà di rilfessione

Calcolo stocastico (richiami)
• integrale di Itȏ's
• Formula di Itȏ-Döblin
• Equazione di Black-Scholes-Merton
• Evoluzione di portafogli/processi di valore
• Soluzione dell'equazione di Black-Scholes-Merton Equation
• Analisi di sensitività

Prezzaggio neutrale al rischio
• Misura neutrale al rischio e teorema di Girsanov's
• Prezzaggio sotto la misura neutrale al rischio
• Teoremiii fondamentali dell'Asset Pricing
• Esistenza ed unicità della misura neutrale al rischio
• Pagamento di dividendi, anche continui
• Forwards e Futures

Equazioni differenziali stocastiche (richiami)
• Proprietà di Markov
• Modelli a tasso d'interesse
• Teorema di Feynman-Kac multidimensionale
• Opzioni Lookback, asiatiche, americane

Modelli struttura a termine
• Modelli affini
• Vasicek a due fattori
• CIR a due fattori
• Modello Heath-Jarrow-Morton (HJM)
• HJM sotto misura neutrale al rischio

Modalità d'esame

Ci sara' un esame scritto.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI