Studying at the University of Verona

A.A. 2015/2016

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2015 Jan 29, 2016
II semestre Mar 1, 2016 Jun 10, 2016
Exam sessions
Session From To
Sessione straordinaria Appelli d'esame Feb 1, 2016 Feb 29, 2016
Sessione estiva Appelli d'esame Jun 13, 2016 Jul 29, 2016
Sessione autunnale Appelli d'esame Sep 1, 2016 Sep 30, 2016
Degree sessions
Session From To
Sess. autun. App. di Laurea Oct 12, 2015 Oct 12, 2015
Sess. autun. App. di Laurea Nov 26, 2015 Nov 26, 2015
Sess. invern. App. di Laurea Mar 15, 2016 Mar 15, 2016
Sess. estiva App. di Laurea Jul 19, 2016 Jul 19, 2016
Sess. autun. 2016 App. di Laurea Oct 11, 2016 Oct 11, 2016
Sess. autun 2016 App. di Laurea Nov 30, 2016 Nov 30, 2016
Sess. invern. 2017 App. di Laurea Mar 16, 2017 Mar 16, 2017
Holidays
Period From To
Festività dell'Immacolata Concezione Dec 8, 2015 Dec 8, 2015
Vacanze di Natale Dec 23, 2015 Jan 6, 2016
Vacanze Pasquali Mar 24, 2016 Mar 29, 2016
Anniversario della Liberazione Apr 25, 2016 Apr 25, 2016
Festa del S. Patrono S. Zeno May 21, 2016 May 21, 2016
Festa della Repubblica Jun 2, 2016 Jun 2, 2016
Vacanze estive Aug 8, 2016 Aug 15, 2016

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G M O R S Z

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968
Foto,  April 11, 2016

Dos Santos Vitoria Jorge Nuno

jorge.vitoria@univr.it

Gobbi Bruno

bruno.gobbi@univr.it

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Zampieri Gaetano

gaetano.zampieri@univr.it +39 045 8027979

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

TeachingsCreditsTAFSSD
6
A
(MAT/02)
One course to be chosen among the following
6
C
(SECS-P/01)
6
C
(FIS/01)
6
B
(MAT/03)
One course to be chosen among the following
6
C
(SECS-P/01)
6
B
(MAT/06)
TeachingsCreditsTAFSSD
One/two courses to be chosen among the following
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(SECS-P/05)
Prova finale
6
E
(-)

2° Anno

TeachingsCreditsTAFSSD
6
A
(MAT/02)
One course to be chosen among the following
6
C
(SECS-P/01)
6
C
(FIS/01)
6
B
(MAT/03)
One course to be chosen among the following
6
C
(SECS-P/01)
6
B
(MAT/06)

3° Anno

TeachingsCreditsTAFSSD
One/two courses to be chosen among the following
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(SECS-P/05)
Prova finale
6
E
(-)
Teachings Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S02750

Credits

12

Coordinatore

Gino Mariotto

Scientific Disciplinary Sector (SSD)

FIS/01 - EXPERIMENTAL PHYSICS

Language of instruction

Italian

The teaching is organized as follows:

teoria

Credits

9

Period

II semestre

Academic staff

Gino Mariotto

esercitazioni [Esercitazioni I]

Credits

1

Period

II semestre

Academic staff

Nicola Daldosso

esercitazioni [Esercitazioni II]

Credits

1

Period

II semestre

Academic staff

Nicola Daldosso

esercitazioni [Laboratorio]

Credits

2

Period

II semestre

Academic staff

Nicola Daldosso

???OrarioLezioni???

Learning outcomes

Teaching course of Physics I with Laboratory
The course is for the students of the first year of the Laurea triennale in Matematica Applicata. It aims at providing the essential elements of the experimental method, of the classical mechanics and of the thermodynamic The educational objectives are achieved through teaching activities (lectures and exercises, both in the classroom and in the laboratory) held during the second semester for a total number of 12 CFU, divided into two teaching modules carried out in parallel: A) Theory (9 CFU) and B) Laboratory (3 CFU).

A) Module: Theory
The module of Theory provides basic knowledge of Classical Mechanics through the derivation of the laws and principles governing the motion of the bodies, as well as the elements useful for resolving exercises and problems. In the aim to help the student in understanding and learning the laws and principles of mechanics and thermodynamics, during the lectures the teacher will refer in a systematic way to phenomenology. The module is supplemented by a course of exercises having as specific objective the solution of exercises and problems in order to put the student in conditions to face and pass the written test of the final exam.

B) Module: Laboratory
The laboratory module aims at teaching the fundamentals of the experimental method, thus demonstrating that Physics is a quantitative science based on the measurement of physical quantities and on the evaluation of their error due to the resolution limits of the instruments and to the presence of random errors. The course objective is introducing students to the knowledge and the expertise in using laboratory tools by means of setting up and executing simple experiments, which consist in the measurements of physical quantities and their consequent data representation and analysis. It will be demonstrated the validity of simple physics lays by using the appropriate experimental procedure.

Program

Module: Theory
-------

1. Meccanica

1.1 - Grandezze fisiche e loro misura: Note introduttive sul metodo sperimentale. Grandezze fisiche fondamentali e derivate. Unità di misura. Definizione operativa delle grandezze fisiche. Sistemi di unità di misura. Il sistema internazionale (S.I.). Scalari e vettori. Operazioni con i vettori: somma, prodotto scalare e prodotto vettoriale. Generalità sulle leggi fisiche. Analisi dimensionale. Rappresentazione tabulare e grafica. Ordini di grandezza.

1.2 - Cinematica del punto materiale: Relatività del moto. Sistemi di riferimento. Validità sperimentale della geometria euclidea. Sistemi in coordinate cartesiane, polari e cilindriche. Trasformazioni delle coordinate di un punto fra diversi sistemi di riferimento. Posizione, spostamento e velocità. Concetto di punto materiale. Legge oraria del moto. Traiettoria. Moto rettilineo e curvilineo.
Moto unidimensionale. Posizione istantanea e spostamento. Derivazione delle grandezze cinematiche a partire dalla legge oraria. Velocità e accelerazione scalare media e istantanea. Dall'accelerazione alla velocità e alla legge oraria. Condizioni iniziali. Moto uniforme e uniformemente accelerato. Accelerazione di gravità g. Moto armonico semplice.
Moto in tre dimensioni. Sistemi di riferimento in coordinate cartesiane e polari. Equazioni parametriche del moto. Velocità e accelerazione vettoriali medie e istantanee. Moti ad accelerazione costante. Moto curvilineo in coordinate intrinseche. Componenti tangenziale e normale dell'accelerazione. Moto curvilineo piano in coordinate polari. Componenti radiale e trasversale della velocità. Moto circolare: velocità ed accelerazione angolare. Moto circolare uniforme: periodo e frequenza di rivoluzione. Moto circolare in notazione vettoriale. Regola di Poisson.

1.3 - Moti relativi: Sistemi di riferimento assoluti e raltivi. Spostamento, velocità e accelerazione di trascinamento. Moto relativo traslatorio uniforme ed uniformemente accelerato. Trasformazioni di Galileo: invarianza dell'accelerazione. Principio di relatività classica.
Moto relativo roto-traslatorio. Trasformazioni della velocità e accelerazione. Moto rotatorio uniforme: accelerazione centrifuga e di Coriolis.

1.4 - Dinamica del punto materiale: Concetto di massa. Particella libera. Principio di inerzia. Concetto di interazione e di forza. Legge di Newton. Principio di azione e reazione. Impulso e quantità di moto. Teorema dell'impulso. Classificazione delle forze esistenti in natura. Definizione operativa di forza. Equazione del moto di una particella. Risultante delle forze applicate. Equilibrio statico e dinamico. Vincoli e reazioni vincolari. Forze d'attrito statico e dinamico. Attrito viscoso. Forze elastiche. Oscillatore orizzontale e verticale. Pendolo semplice. Sistemi di riferimento non inerziali. Forza di trascinamento e forze fittizie.
Momento della quantità di moto, momento di una forza e teorema del momento angolare. Forze centrali. Conservazione del momento angolare. Legge di gravitazione universale di Newton e leggi di Keplero.

1.5 - Energia e Lavoro: Integrali primi della forza: impulso e lavoro. Potenza. Unità di misura del lavoro e della potenza. Energia cinetica. Teorema dell’energia cinetica. Lavoro di una forza costante. Lavoro di una forza elastica e di una forza centrale. Forze conservative. Energia potenziale Proprietà della funzione energia potenziale. Relazione fra energia potenziale e forza. Principio di conservazione dell'energia meccanica. Lavoro di una forza non-conservativa.
Campi di forze centrali. Natura conservativa di un campo di forze centrali. Energia potenziale gravitazionale. Moto sotto l’azione della forza gravitazionale. Velocità di fuga dalla terra.

1.6 - Dinamica dei sistemi di particelle: Sistemi discreti e sistemi continui. Generalizzazione dei risultati della dinamica del punto materiale. Grandezze collettive: quantità di moto, momento angolare e energia cinetica totale. Forze interne e forze esterne. Principio di azione e reazione per un sistema di punti materiali. Equazioni cardinali della dinamica di un sistema di particelle. Condizioni di equilibrio per un sistema di punti materiali. Centro di massa (CM): definizione e sue proprietà. Sistema di riferimento del laboratorio (sistema L) e del CM (sistema C). Teoremi di König. Moto del CM e moto rispetto al CM. Lavoro delle forze interne e delle forze esterne. Energia potenziale delle forze interne ed esterne. Energia propria. Energia interna. Energia totale meccanica. Problema dei due corpi: massa ridotta. Sistemi rigidi costituiti da due corpi puntiformi.
Proprietà dei sistemi di forze. Coppia di forze. Centro di forze e centro di gravità.
Urti tra due particelle. Approssimazione di impulso. Forze interne ed esterne. Conservazione della quantità di moto totale e dell'energia cinetica del CM. Urti centrali elastici e completamente anelastici. Urti tra particelle libere e corpi vincolati. Conservazione del momento della quantità di moto.

2. Termodinamica

2.1 - Primo principio della termodinamica: Sistemi e stati termodinamici. Universo termodinamico. Variabili termodinamiche: concentrazione, pressione, volume e temperatura. Concetto di pressione idrostatica. Concetto di temperatura. Principio dell’equilibrio termico. Definizione operativa di temperatura. Contatto termico. Punti fissi. Scale termometriche: scale Celsius e Kelvin. Termometri. Stati di equilibrio termodinamico. Variabili di stato. Equazioni di stato.
Equivalenza fra lavoro e calore. Primo principio della termodinamica. Energia interna. Conservazione dell'energia di un sistema termodinamico. Trasformazioni termodinamiche. Lavoro e calore. Lavoro termodinamico: sua dipendenza dalla trasformazione termodinamica. Lavoro per trasformazioni reversibili ed irreversibili. Elementi di calorimetria. Temperature e calore. Capacità termica e quantità di calore scambiata. Calori specifici molari e calore specifico di un solido. Processi isotermi. Cambiamenti di fase. Calori latenti.

2.2 - Gas ideali: definizione e proprietà. Equazione di stato di un gas perfetto. Trasformazioni di un gas. Lavoro e calore. Energia interna di un gas perfetto. Calori specifici molari dei gas ideali. Relazione di Mayer. Il primo principio della termodinamica per un gas perfetto. Trasformazioni reversibili ed irreversibili. Trasformazioni isoterme, isocore e isobare. Trasformazioni adiabatiche. Applicazione del primo principio. Trasformazioni cicliche. Cicli termici e cicli frigoriferi. Rendimento di un ciclo termico. Ciclo di Carnot.

2.3 - Secondo principio della termodinamica: Macchine termiche e macchine frigorifere. Sorgenti di calore e termostati. Enunciati del secondo principio della termodinamica.Teorema di Carnot. Rendimento massimo. Diseguaglianza di Clausius.
Entropia. Entropia di un gas ideale. Trasformazioni adiabatiche. Scambi di calore con sorgenti. Entropia dell'universo termodinamico.

Examination Methods

Module: Theory

The final exam consists of both a written test and an oral interview, to which the student is admitted after having overcome the written test. The written test is considered to be overcome when the related vote achieved by the student is not less than 18/30. Examination methods for the theory module are the same for attending and non-attending students.
The two written and oral exam tests are aimed at ascertaining the level of knowledge acquired by the student within the theory teaching module:
The written test concerns the resolution of some typical problems of mechanics of the particle, of particle systems, and of the rigid body, which include the application of laws and derived principles (both enunciated and demonstrated) during frontal lessons and systematically recalled during the classroom exercises. Part of the written test may be carried out by passing the “in-itinere” assessment test.
The oral examination consists of an interview with questions about the classroom program related to the derivation of physical laws and the demonstration of the theorems and conservation principles of the particle dynamics, of particle systems and of the rigid body.
For the Theory module, the cumulative evaluation is obtained by making the arithmetic mean of the evaluations obtained in both written and oral exceeded tests.

Module: Laboratory

For the lab module, an ongoing and a final group’s report on the simple pendulum experiment is evaluated, the evaluation being also expressed in thirtieths.


The overall assessment of the examination of the teaching course of Physics I with Laboratory will be the average, weighted on the number of the module CFUs, of the marks achieved in the assessment tests for each of the two modules (Theory and Laboratory).

Bibliografia

Reference texts
Activity Author Title Publishing house Year ISBN Notes
esercitazioni John R. Taylor Introduzione all'analisi degli errori (lo studio delle incertezze nelle misure fisiche) (Edizione 2) Zanichelli 1999 9788808176561
esercitazioni Paolo Fornasini The Uncertainty in Physical Measurements (An introduction to data analysis in the Physics Laboratory) Springer 2008 9780387786490
esercitazioni John R. Taylor Introduzione all'analisi degli errori (lo studio delle incertezze nelle misure fisiche) (Edizione 2) Zanichelli 1999 9788808176561
esercitazioni Paolo Fornasini The Uncertainty in Physical Measurements (An introduction to data analysis in the Physics Laboratory) Springer 2008 9780387786490
esercitazioni John R. Taylor Introduzione all'analisi degli errori (lo studio delle incertezze nelle misure fisiche) (Edizione 2) Zanichelli 1999 9788808176561
esercitazioni Paolo Fornasini The Uncertainty in Physical Measurements (An introduction to data analysis in the Physics Laboratory) Springer 2008 9780387786490

Teaching materials

Tipologia di Attività formativa D e F

Academic year

Course not yet included

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

Allegati

Title Info File
pdf Come scrivere una tesi (.pdf) 31 KB, 30/06/21 
pdf Regolamento tesi 147 KB, 02/07/21 

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

University Language Centre - CLA

Allegati


Tutorato per gli studenti

I docenti dei singoli Corsi di Studio erogano un servizio di tutorato volto a orientare e assistere gli studenti del triennio, in particolare le matricole, per renderli partecipi dell’intero processo formativo, con l’obiettivo di prevenire la dispersione e il ritardo negli studi, oltre che promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

TUTORATO PER GLI STUDENTI DELL’AREA DI SCIENZE E INGEGNERIA
Tutorato finalizzato a offrire loro un’attività di orientamento che possa essere di supporto per gli aspetti organizzativi e amministrativi della vita universitaria.
Le tutor attualemente di riferimento sono:
  • Dott.ssa Luana Uda, luana.uda@univr.it
  • Dott.ssa Roberta RIgaglia, roberta.rigaglia@univr.it

Tirocini e stage

Le attività di stage sono finalizzate a far acquisire allo studente una conoscenza diretta in settori di particolare attività per l’inserimento nel mondo del lavoro e per l’acquisizione di abilità specifiche di interesse professionale.
Le attività di stage sono svolte sotto la diretta responsabilità di un singolo docente presso studi professionali, enti della pubblica amministrazione, aziende accreditate dall’Ateneo veronese.
I crediti maturati in seguito ad attività di stage saranno attribuiti secondo quanto disposto nel dettaglio dal “Regolamento d’Ateneo per il riconoscimento dei crediti maturati negli stage universitari” vigente.

Tutte le informazioni in merito agli stage sono reperibili al link https://www.univr.it/it/i-nostri-servizi/stage-e-tirocini.