Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2015/2016

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2015 Jan 29, 2016
II semestre Mar 1, 2016 Jun 10, 2016
Exam sessions
Session From To
Sessione straordinaria Appelli d'esame Feb 1, 2016 Feb 29, 2016
Sessione estiva Appelli d'esame Jun 13, 2016 Jul 29, 2016
Sessione autunnale Appelli d'esame Sep 1, 2016 Sep 30, 2016
Degree sessions
Session From To
Sess. autun. App. di Laurea Oct 12, 2015 Oct 12, 2015
Sess. autun. App. di Laurea Nov 26, 2015 Nov 26, 2015
Sess. invern. App. di Laurea Mar 15, 2016 Mar 15, 2016
Sess. estiva App. di Laurea Jul 19, 2016 Jul 19, 2016
Sess. autun. 2016 App. di Laurea Oct 11, 2016 Oct 11, 2016
Sess. autun 2016 App. di Laurea Nov 30, 2016 Nov 30, 2016
Sess. invern. 2017 App. di Laurea Mar 16, 2017 Mar 16, 2017
Holidays
Period From To
Festività dell'Immacolata Concezione Dec 8, 2015 Dec 8, 2015
Vacanze di Natale Dec 23, 2015 Jan 6, 2016
Vacanze Pasquali Mar 24, 2016 Mar 29, 2016
Anniversario della Liberazione Apr 25, 2016 Apr 25, 2016
Festa del S. Patrono S. Zeno May 21, 2016 May 21, 2016
Festa della Repubblica Jun 2, 2016 Jun 2, 2016
Vacanze estive Aug 8, 2016 Aug 15, 2016

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D G L M O R S Z

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968
Foto,  April 11, 2016

Dos Santos Vitoria Jorge Nuno

jorge.vitoria@univr.it

Gaburro Elena

elena.gaburro@unitn.it, elenagaburro@gmail.com

Gobbi Bruno

bruno.gobbi@univr.it

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Malachini Luigi

luigi.malachini@univr.it 045 8054933

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mariutti Gianpaolo

gianpaolo.mariutti@univr.it 045 802 8241

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977
Marco Squassina,  January 5, 2014

Squassina Marco

marco.squassina@univr.it +39 045 802 7913

Zampieri Gaetano

gaetano.zampieri@univr.it +39 045 8027979

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
6
A
(MAT/02)
One course to be chosen among the following
6
C
(SECS-P/01)
6
C
(FIS/01)
6
B
(MAT/03)
One course to be chosen among the following
6
C
(SECS-P/01)
6
B
(MAT/06)
ModulesCreditsTAFSSD
One/two courses to be chosen among the following
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(SECS-P/05)
Prova finale
6
E
(-)

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
One course to be chosen among the following
6
C
(SECS-P/01)
6
C
(FIS/01)
6
B
(MAT/03)
One course to be chosen among the following
6
C
(SECS-P/01)
6
B
(MAT/06)

3° Year

ModulesCreditsTAFSSD
One/two courses to be chosen among the following
12
C
(SECS-S/06)
6
C
(MAT/07)
6
C
(SECS-P/05)
Prova finale
6
E
(-)
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S02755

Credits

12

Coordinatore

Leonard Peter Bos

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Language

Italian

The teaching is organized as follows:

teoria

Credits

9

Period

I semestre

Academic staff

Leonard Peter Bos

laboratorio

Credits

3

Period

I semestre

Academic staff

Elena Gaburro

???OrarioLezioni???

Learning outcomes

Module: Laboratory
-------

Implementation in Matlab and/or GNU Octave of the main algorithms of Numerical Analysis.

Module: Theory
-------

The basics of Numerical Analysis.

Program

Module: Theory
-------

* Analysis of errors: Overflow, Underflow, Cancellation
* Nonlinear equations: the Bisection Method, Fixed Point Iterations, Newton's Method, the Secant Method, Polynomials, Horner's Rule
* Linear Systems: Direct Methods, the LU Decomposition and Pivoting, Forward and Back Substitution; Iterative Methods, Jacobi Iteration, Gauss-Seidel and SOR. Iterative Improvement, the Gradient Method, Conjugate Gradient, over and under determined systems
* Eigenvalues and Eigenvectors: the Power Method, the Inverse Power Method, the QR algorithm
* Interpolation and Approximation fo Functions and Data: Polynomial interpolation, the Newton and Lagrange forms. Splines. Least Squares and the SVD.
* Numerical Integration and Derivatives: Simple formulas for the estimation of a derivative with relative error, numerical quadrature, interpolatory formulas, composite formulas, Gaussian Quadrature, Adaptive Quadrature.
* Numerical Solution of ODE's (time permitting)

Examination Methods

There will be an exam consisting of two parts. The first will be written in the Laboratory and consist of 2 or 3 questions to be solved using Matlab (or Octave) with appropriate brief description.

These questions will be very similar to the exercises given in the Laboratory and hence attending the Laboratory and completing the assigned exercises is strongly reccomended.

Student will be permitted to bring notes, handouts and their solutions to the exercises to the written exam.

The second part will be an oral exam based on the more theoretical aspects of the course. Students will be admitted to the oral exam only after having passed the written exam.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.