Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I sem. Oct 1, 2014 Jan 30, 2015
II sem. Mar 2, 2015 Jun 12, 2015
Exam sessions
Session From To
Sessione straordinaria appelli d'esame Feb 2, 2015 Feb 27, 2015
Sessione estiva appelli d'esame Jun 15, 2015 Jul 31, 2015
Sessione autunnale appelli d'esame Sep 1, 2015 Sep 30, 2015
Degree sessions
Session From To
Sessione autunnale appello di laurea 2014 Nov 27, 2014 Nov 27, 2014
Sessione invernale appello di laurea 2015 Mar 17, 2015 Mar 17, 2015
Sessione estiva appello di laurea 2015 Jul 21, 2015 Jul 21, 2015
Sessione II autunnale appello di laurea 2015 Oct 12, 2015 Oct 12, 2015
Sessione autunnale appello di laurea 2015 Nov 26, 2015 Nov 26, 2015
Sessione invernale appello di laurea 2016 Mar 15, 2016 Mar 15, 2016
Holidays
Period From To
Vacanze di Natale Dec 22, 2014 Jan 6, 2015
Vacanze di Pasqua Apr 2, 2015 Apr 7, 2015
Ricorrenza del Santo Patrono May 21, 2015 May 21, 2015
Vacanze estive Aug 10, 2015 Aug 16, 2015

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrollment FAQs

Academic staff

A B C D G L M O R S Z
AlbertiniFrancesca

Albertini Francesca

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number +39 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number +39 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Chignola Roberto

symbol email roberto.chignola@univr.it symbol phone-number 045 802 7953

Cicognani Simona

symbol email simona.cicognani@univr.it symbol phone-number 0458028099
Foto,  March 10, 2017

Cordoni Francesco Giuseppe

symbol email francescogiuseppe.cordoni@univr.it

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

symbol email francesco.desinopoli@univr.it symbol phone-number 045 842 5450

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Gaburro Elena

symbol email elena.gaburro@univr.it

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Lo Bue Maria Carmela

symbol email mariacarmela.lobue@univr.it symbol phone-number +39 0458028768

Malachini Luigi

symbol email luigi.malachini@univr.it symbol phone-number 045 8054933

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mariotto Gino

symbol email gino.mariotto@univr.it

Mariutti Gianpaolo

symbol email gianpaolo.mariutti@univr.it symbol phone-number +390458028241

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number +39 045 802 7986
Foto,  September 29, 2016

Rinaldi Davide

symbol email davide.rinaldi@univr.it

Rizzi Romeo

symbol email romeo.rizzi@univr.it symbol phone-number +39 045 802 7088

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977

Zuccher Simone

symbol email simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2015/2016

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01

3° Year  activated in the A.Y. 2016/2017

ModulesCreditsTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
activated in the A.Y. 2015/2016
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
B
MAT/06
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
6
C
FIS/01
Uno tra i seguenti insegnamenti
6
C
SECS-P/01
activated in the A.Y. 2016/2017
ModulesCreditsTAFSSD
6
C
SECS-P/05
Uno o due insegnamenti tra i seguenti per un totale di 12 cfu
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Altre attività formative
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00001

Teacher

Romeo Rizzi

Coordinator

Romeo Rizzi

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/09 - OPERATIONS RESEARCH

Period

II sem. dal Mar 1, 2017 al Jun 9, 2017.

Learning outcomes

The student of mathematics (L40, Verona) will encounter in concrete the concepts of: problems, models, formulations of operations research, but also of instances, algorithms, reductions and mappings among problems of the computer science field. The course will propose some models of operations research, at least the following: linear programming (LP), integer linear programming (ILP), max-flows and min-cuts, bipartite matchings and node covers, minimum spanning trees, shortest paths, Eulerian paths, and some models resorting on dynamic programming among which some knapsack variants. For all these models/problems, except PLI, the student will learn the solving algorithms, the properties on which they hinge, and how to conduct their execution.
However, besides and beyond this, the course aims at building a good and active relationship, practice, and acquaintance, with general mathematical methodologies and techniques (more typical of discrete math and for this reason not yet fully assimilated from our students) and some basic underpinnings of computer science. In particular, we insist on the dialog with problems and with the art/technique of conjecturing, no occasion is lost to spotlight where invariants and monovariants play a role in proofs, algorithms and data structures. We build up confidence with mathematical induction as an active tool for problem solving, and introducing the dialects of induction most voted to efficiency (divide et impera, recursion with memoization, dynamic programming). Some basic principles of informatics are underlined, like coding, algorithms, data structures, recursion as a counterpart of mathematical induction and of computability. (In some editions of the course first scratch introductions to numerability and computability have been offered). Coming to efficiency, our central perspective, the use of asymptotic notation is justified and adopted, the classes P, NP, coNP are introduced, and the concepts of good characterizations, good conjectures and good theorems are illustrated in length and complexity theory is advertised as a lively source of new methodologies in the art of facing problems and enquiry their intrinsic structural properties. Several aspects of the role and importance of the art of reducing one problem to another are discussed and clarified. The life cycle of a good conjecture, the workflow linking good conjectures and algorithms, the production and interpretation of counterexamples as a means of dialog with the problem, and the possible use of them in obtaining NP-completeness proofs, are all discussed, investigated and exemplified in action.
Explicit emphasis is constantly given to the role and use of certificates. Meanwhile these transversal and high competences of methodological interest and imprinting are delivered, the students is asked to learn and develop several concrete procedural competences, in particular within LP, and in an algorithmic treatment of graph theory, introduced as a versatile model and an intuitive and expressive language for the formulation of problems.
For a complete and detailed list of all these procedural competences delivered and requested, see the past exams and corrections over the various editions of the course.

Program

Operations Research offers quantitative methods and models for the optimal management of resources, and optimization of profits, services, strategies, procedures.
This course of Operations Research gets to Mathematical Programming
moving from Algorithmics and Computational Complexity.
After revisiting mathematical induction, recursion, divide et impera, with a curiosity driven problem solving approach, we insist on dynamic programming thinking which gets then exemplified in a few classical models of Operations Research and Computational Biology.
With emphasis on method and techniques, we get involved in formulating, encoding and modeling problems, conjecturing about them, reducing one to the other,
and well characterizing them.
The course offers an in-depth introduction to linear programming.
Following the historical path, we introduce graphs as for modeling,
and explore the basic fundamental results in combinatorial optimization and graph theory.

LIST OF TOPICS:

1. Basic Notions
problems
models
algorithms
complexity

2. Introduction to Algorithms and Complexity
analysis of a few algorithms
design techniques (recursion, divede et impera, recursion with memoization, dynamic programming, greedy)
complexity theory (P, NP, co-NP, good characterizations, good conjectures, examples of NP-completeness proofs)

3. Combinatorial Optimization Models
knapsack problems
Problems on sequences
Problems on DAGs

4. Introduction to Graph Theory
graphs and digraphs as models
a few good characterizations (bipartite, Eulerian, acyclic, planar graphs)
a few NP-hard models (Hamilton cycles, cliques, colorability)
shortest paths
minimum spanning trees
maximum flows
bipartite matchings

5. Linear Programming (LP)
the LP and the ILP models (definition, motivations, complexity, role)
geometric method and view (feasibility space,
pivot, duality, dual variables, degeneracy, complementary slackness)
standard and canonical form
simplex method
duality theory
complementary slackness
economic interpretation of the dual variables
sensitivity analysis

Reference texts
Author Title Publishing house Year ISBN Notes
T. Cormen, C. Leiserson, R. Rivest Introduction to algorithms (Edizione 1) MIT Press 1990 0262031418
Robert J. Vanderbei Linear Programming: Foundations and Extensions (Edizione 4) Springer 2001 978-1-4614-7630-6 DOI: 10.1007/978-1-4614-7630-6 eBook ISBN: 978-1-4614-7630-6 Hardcover ISBN: 978-1-4614-7629-0 Softcover ISBN: 978-1-4899-7376-4

Examination Methods

At the end of the course, a written exam with various types of exercises and questions, and several opportunities to gather points to test and prove your preparation.
In preparing yourself for this exam,
take profit of the material (text and correction for each previous exam) available at the website of the course:

http://profs.sci.univr.it/~rrizzi/classes/RO/index.html

Testing your preparation on these tasks and comparing your solutions against the ones given as reference (pay attention not only to the answers but also to the way you offer them to the examiner/verifier, to the quality of your certificates) will allow you to check your comprehension of the topics covered and of the algorithms and methodologies illustrated during the course. Furthermore, it will help
you in tuning your preparation to the exam and refine your procedures and approaches, making clear what kinds of evidences the examiner is expecting you to produce with clarity.

During the exam, be prepared to work for 4 or more hours to what I call "a paper chromatography test". I hope it serves the purpose to recognize in reasonable enough confidence the amount of work you have put in and how much you got for yourself from the course. And make a mark proposal out of it.
There are far more points available than needed to go in saturation. Indeed, your goal should be to prove the competences you have collected: what counts is what you know and/or can solve, not what you don't.
Rather, pay attention to this: only the answers given with clarity, providing the due certificates, count.
All the rest is of null measure to my correction.
In this, the spirit of the correction is in line with the methodologies from computational complexity advertised by the course.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

Graduation

For schedules, administrative requirements and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.

Documents

Title Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 29/07/21
File pdf 2. How to write a thesis pdf, it, 31 KB, 29/07/21
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

List of thesis proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Various topics
Mathematics Bachelor and Master thesis titles Various topics
THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery Various topics
THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives Various topics
THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization Various topics

Attendance modes and venues

As stated in the Teaching Regulations , except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.

Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.

The course's teaching activities take place in the Science and Engineering area, which consists of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma campus. 
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.


Career management


Student login and resources


Erasmus+ and other experiences abroad


Ongoing orientation for students

The committee has the task of guiding the students throughout their studies, guiding them in their choice of educational pathways, making them active participants in the educational process and helping to overcome any individual difficulties.

It is composed of professors Lidia Angeleri, Sisto Baldo, Marco Caliari, Paolo dai Pra, Francesca Mantese, and Nicola Sansonetto 

To send an email to professors: name.surname@univr.it