Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2015/2016

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2015 Jan 29, 2016
II semestre Mar 1, 2016 Jun 10, 2016
Exam sessions
Session From To
Sessione straordinaria Appelli d'esame Feb 1, 2016 Feb 29, 2016
Sessione estiva Appelli d'esame Jun 13, 2016 Jul 29, 2016
Sessione autunnale Appelli d'esame Sep 1, 2016 Sep 30, 2016
Degree sessions
Session From To
Sess. autun. App. di Laurea LM9 Oct 19, 2015 Oct 19, 2015
Sess. invern. 2016 Appelli di Laurea LM9 Mar 11, 2016 Mar 11, 2016
Sess. estiva App. di Laurea LM9 Jul 8, 2016 Jul 8, 2016
Sess. autun. 2016 App. di Laurea LM9 Oct 18, 2016 Oct 18, 2016
Sess. invern. 2017 App. di Laurea LM9 Mar 14, 2017 Mar 14, 2017
Holidays
Period From To
Festività dell'Immacolata Concezione Dec 8, 2015 Dec 8, 2015
Vacanze di Natale Dec 23, 2015 Jan 6, 2016
Vancanze di Pasqua Mar 24, 2016 Mar 29, 2016
Anniversario della Liberazione Apr 25, 2016 Apr 25, 2016
Festa del S. Patrono S. Zeno May 21, 2016 May 21, 2016
Festa della Repubblica Jun 2, 2016 Jun 2, 2016
Vacanze estive Aug 8, 2016 Aug 15, 2016

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G K L M S T V

Assfalg Michael

michael.assfalg@univr.it +39 045 802 7949

Berton Giorgio

giorgio.berton@univr.it 045 8027126

Boaretti Marzia

marzia.boaretti@univr.it 045 8027661

Bossi Alessandra Maria

alessandramaria.bossi@univr.it 045 802 7946 (Studio) - 045 802 7833 (Laboratorio)

Cecconi Daniela

daniela.cecconi@univr.it +39 045 802 7056; Lab: +39 045 802 7087

Corbo Vincenzo

vincenzo.corbo@univr.it + 39 0458124830

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

Dominici Paola

paola.dominici@univr.it 045 802 7966; Lab: 045 802 7956-7086

Fumagalli Guido Francesco

guido.fumagalli@univr.it 045 802 7605 (dipartimento)

Giorgetti Alejandro

alejandro.giorgetti@univr.it 045 802 7982

Krampera Mauro

mauro.krampera@univr.it 0458124034

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Lleo'Fernandez Maria Del Mar

maria.lleo@univr.it 045 8027194

Malerba Giovanni

giovanni.malerba@univr.it 045/8027685

Mazzariol Annarita

annarita.mazzariol@univr.it 045 8027690
Foto,  April 9, 2014

Monaco Ugo Luigi

hugo.monaco@univr.it 045 802 7903; Lab: 045 802 7907 - 045 802 7082

Montagnana Martina

martina.montagnana@univr.it +39 045 812 6698

Scarpa Aldo

aldo.scarpa@univr.it 045 8127457

Signoretto Caterina

caterina.signoretto@univr.it 045 802 7195

Tagliaro Franco

franco.tagliaro@univr.it 045 8124618-045 8124246

Vitulo Nicola

nicola.vitulo@univr.it 0458027982

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

ModulesCreditsTAFSSD
2 courses to be chosen among the following
One course to be chosen among the following:
One course to be chosen among the following
ModulesCreditsTAFSSD
2 courses to be chosen among the following:
6
C
(MED/04)
Stage
2
F
-
Prova finale
40
E
(-)

1° Year

ModulesCreditsTAFSSD
2 courses to be chosen among the following
One course to be chosen among the following:
One course to be chosen among the following

2° Year

ModulesCreditsTAFSSD
2 courses to be chosen among the following:
6
C
(MED/04)
Stage
2
F
-
Prova finale
40
E
(-)

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S003669

Credits

6

Coordinatore

Paola Dominici

Scientific Disciplinary Sector (SSD)

BIO/10 - BIOCHEMISTRY

Language

English

The teaching is organized as follows:

a

Credits

1

Period

II semestre

Academic staff

Massimo Delledonne

b

Credits

1

Period

II semestre

Academic staff

Paola Dominici

c

Credits

1

Period

II semestre

Academic staff

Alejandro Giorgetti

d

Credits

1

Period

II semestre

Academic staff

Daniela Cecconi

e

Credits

2

Period

II semestre

Academic staff

Alessandra Maria Bossi

???OrarioLezioni???

Learning outcomes

The course is divided into 4 interdisciplinary laboratory modules focused on a topic of biological relevance. The main purpose of the course is to offer the student tools to focus on the problem, by using different highly complementary techniques. The GENETICS module aims to provide expertise on experimental approaches and bioinformatics analysis necessary to identify genetic variants associated with specific pathological conditions and their validation. The module of PROTEIN ENGINEERING aims to provide to the students with specific information on the principles and techniques used in protein engineering, with particular reference to the production of recombinant proteins in heterologous systems (construction and expression of foreign gene in prokaryotic and eukaryotic host cell). The BIOINFORMATICS module aims to introduce the computational methods used today to predict the effect of variants associated with diseases on the structure/function of proteins. At the end of the course, the student must demonstrate that he is able to use state-of-the-art computational methods to predict the effect of mutants from the sequence and structure of proteins. The module of EXPRESSIONAL PROTEOMICS aims to acquire laboratory skills for the preparation of an experiment in differential proteomics. The experiment can be aimed at the comparison of a pathological sample with a control sample for the identification of potential biomarkers of clinical use, or aimed at the comparison of a cellular sample treated or not with a drug for the recognition of the mechanism of molecular action of the drug itself.

Program

Definition of recombinant protein. Introduction to protein engineering. Acquisition of the required information (theoretical and experimental) to carry out the process of engineering of a protein function/structure. Production of recombinant proteins. Experimental approaches to study and modulate the protein functionality. Protein characterization (Site directed mutagenesis, Gel electrophoresis, Tryptophan (Trp) fluorescence, ANS Fluorescence, Limited proteolysis). Examples of application of protein engineering.
------------------------
MM: b
------------------------
The module will be entirely developed in a computer laboratory. The module is based on the seminal article: Predicting the Effects of Amino Acid Substitutions on Protein Function by Pauline C. Ng and Steven Henikoff and published in: Annual Review of Genomics and Human Genetics. The techniques reviewed in the article will be briefly introduced to the students. Then the students will put their hands on the problem by using those methods to assess the effects on mutants on human Calmodulin. The methods include: Sequence based methods: - Sift - PolyPhen - Panther - PSEC Structure based methods - Analyse the wild-type structure usgin the Chimera program - Introduce the mutants - Analyse the lost/gain interactions upon mutation - Study of the electrostatic potential on the surface of the protein (wild-type and mutated) Annotation based methods: - iHop - Pfam
------------------------
MM: c
------------------------
The expressional proteomics module includes key issues for a proteomics laboratory, for example, methods for protein quantification before a proteomic analysis, separation of proteins by two-dimensional electrophoresis, the detection of the proteomic profile by different staining (colorimetric and/or fluorescent), image acquisition of proteomic profiles, and an introduction to identification of deregulated proteins by mass spectrometry.
------------------------
MM: d
------------------------
The functional proteomics module focuses on the use of biomimetic approaches for selective recovery of protein classes, for the proteomic analysis. The experimental design is: In silico design of the best epitope target in a defined protein. Preparation of the biomimetic material. Functional characterization of the biomimetic material. Application of the biomimetic material for the selective enrichment of biological samples and analysis 2DE of the enriched fraction. In silico modelling of the protein corona.

Examination Methods

The verification of the acquisition of concepts and protocols inherent to the thematics of the research inspired laboratory , will be through a global exam, subdivided into 10 open questions based on the 5 modules (2 questions for bioinformatics; 2 for biochemistry; 2 for expressional proteomics, 2 for genetics and 3 for functional proteomics) to be replied in 3 hours.
All the questions aims at verifying acquisition of the knowledge of the practicals and of the inherent theories discussed over the course.

Type D and Type F activities

Modules not yet included

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module. 
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Gestione carriere


Graduation

List of theses and work experience proposals

theses proposals Research area
Structural dynamics, aggregation and interactions of amyloidogenic proteins Biological chemistry - Biological chemistry
Structural dynamics, aggregation and interactions of amyloidogenic proteins Molecular interactions - Molecular interactions
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles
3D-bioprinting biofabrication laboratory Various topics
Organ on-a-chip Various topics

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.