Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I sem. | Oct 3, 2016 | Jan 31, 2017 |
II sem. | Mar 1, 2017 | Jun 9, 2017 |
Session | From | To |
---|---|---|
Sessione invernale Appelli d'esame | Feb 1, 2017 | Feb 28, 2017 |
Sessione estiva Appelli d'esame | Jun 12, 2017 | Jul 31, 2017 |
Sessione autunnale Appelli d'esame | Sep 1, 2017 | Sep 29, 2017 |
Session | From | To |
---|---|---|
Sessione estiva Appelli di Laurea | Jul 14, 2017 | Jul 14, 2017 |
Sessione autunnale Appelli di laurea | Oct 20, 2017 | Oct 20, 2017 |
Sessione invernale Appelli di laurea | Mar 15, 2018 | Mar 15, 2018 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2016 | Nov 1, 2016 |
Festa dell'Immacolata Concezione | Dec 8, 2016 | Dec 8, 2016 |
Vacanze di Natale | Dec 23, 2016 | Jan 8, 2017 |
Vacanze di Pasqua | Apr 14, 2017 | Apr 18, 2017 |
Anniversario della Liberazione | Apr 25, 2017 | Apr 25, 2017 |
Festa del Lavoro | May 1, 2017 | May 1, 2017 |
Festa della Repubblica | Jun 2, 2017 | Jun 2, 2017 |
Vacanze estive | Aug 8, 2017 | Aug 20, 2017 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff

Monaco Ugo Luigi
hugo.monaco@univr.it 045 802 7903; Lab: 045 802 7907 - 045 802 7082Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Supramolecular chemistry of biological systems (2016/2017)
Teaching code
4S003661
Teacher
Coordinatore
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
CHIM/06 - ORGANIC CHEMISTRY
Period
I sem. dal Oct 3, 2016 al Jan 31, 2017.
Learning outcomes
This course examines the fundamentals of supramolecular chemistry, the domain of chemistry beyond that of molecules, in biological contexts. The discipline focuses on the chemical systems made up of a discrete number of assembled molecular subunits or components. Important concepts that have been demonstrated by supramolecular chemistry include molecular self-assembly, biomolecular folding, molecular recognition, host-guest chemistry, and molecular architectures. Students develop an understanding of the driving forces of supramolecular associations and how to exploit them for applications in biotechnology and biomedicine.
Program
- Concepts. Reversible non-covalent interactions between molecules, including hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, pi-pi interactions, electrostatics. Cation , anion, and neutral molecule binding.
- Biological supramolecular systems: protein-protein and protein-ligand complexes, nucleic acids, viruses, membranes, cells.
- Methods. Fluorescence spectroscopy, Calorimetry, NMR spectroscopy.
- Self-assembly and self-organization. Thermodynamics of self-assembly. Template effects. Protein aggregation, fibril formation.
- Molecular recognition. Host-guest chemical systems. Receptor-ligand complexes. Lock and key model. Pre-organization and complementarity. Dynamic effects and allosteric binding. Rational drug design. Protein-protein interaction inhibitors. Supramolecular antibiotics.
- Catalysis. Biocatalysis. Template-directed synthesis. Encapsulation systems for catalysis. Catalytic systems. Enzyme mimics.
- Molecular transport and delivery. Encapsulation and targeted release mechanisms. Liposomal drug carriers. Cyclodextrins.
- Biomolecule-nanoparticle interactions. The biomolecular corona of nanoparticles. Nanoparticle effects on protein stability and structure. Hybrid nanosystems. Nanoparticle functionalization with biomolecules.
Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|
Jonathan W. Steed & Jerry L. Atwood | Supramolecular chemistry | John Wiley & Sons | 2009 | 978-0-470-51234-0 | |
Peter J. Cragg | Supramolecular chemistry. From biological inspiration to biomedical applications. | Springer | 2010 | 978-90-481-2581-4 |
Examination Methods
The examiner will verify through oral examination that the student has learned the chemical bases of supramolecular interactions, namely the principles that guide the molecular recognition mechanisms. The student must also be able to thoroughly discuss the main biological supramolecular systems, including in particular the biomolecular complexes, the superstructures, aggregates, and vesicular systems. Students are expected to know of examples of supramolecular chemistry in biomedical applications.
Bibliography
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
3D-bioprinting biofabrication laboratory | Various topics |
Organ on-a-chip | Various topics |
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module.Please refer to the Crisis Unit's latest updates for the mode of teaching.