Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Matematica applicata - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

2° Year  activated in the A.Y. 2016/2017

ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06

3° Year  activated in the A.Y. 2017/2018

ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
activated in the A.Y. 2016/2017
ModulesCreditsTAFSSD
6
A
MAT/02
One course to be chosen among the following
6
C
SECS-P/01
6
C
FIS/01
6
B
MAT/03
One course to be chosen among the following
6
C
SECS-P/01
6
B
MAT/06
activated in the A.Y. 2017/2018
ModulesCreditsTAFSSD
One/two courses to be chosen among the following
6
C
SECS-P/05
Prova finale
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activitites
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00704

Coordinator

Marco Caliari

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Period

I sem. dal Oct 2, 2017 al Jan 31, 2018.

Learning outcomes

The course will discuss, from both the analytic and computational points of view, the main methods for the numerical solution of Ordinary Differential Equations and classical Partial Differential Equations. Exponential Integrators, a current topic of active research in Applied Mathematics, will also be briefly discussed. The course has an important Laboratory component where the methods studied will be implemented using the MATLAB programming platform (using either the official Matlab from Mathworks or else the open source version GNU OCTAVE). At the end of the course the student will be expected to demonstrate that s/he has attained a level of competence in the computational and computer aspects of the course subject, the numerical solution of differential equations.

Program

The course will discuss the following topics:

* Boundary Value Problems: Finite Difference methods, Finite Elements, introduction to Spectral Methods (collocation, discrete Fourier Transform, Galerkin)

* Ordinary Differential Equations: numerical methods for initial value problems, step methods (theta method, variable stepsize Runge-Kutta, introduction to Exponential Integrators) and multistep, stability, absolute stability.

* Partial Differential Equations: basic properties of some of the classical PDEs (Laplace, Heat and Transport), the Method of Lines.

It is expected that there will be a tutor to help with the correction of assigned exercises and with the Laboratory sessions.

Reference texts
Author Title Publishing house Year ISBN Notes
Arieh Iserles A First Course in the Numerical Analysis of Differential Equations (Edizione 2) Cambridge University Press 2009 9780521734905

Examination Methods

The purpose of the exam is to see if the student is able to recall and produce the theory of numerical methods for differential equations presented during the lectures and Laboratory and knows how to use Computer resources for possible further investigation. Moreover, the student must show that s/he knows how to program in the specific software introduced during the course. The exam will consist of two parts. The first part will be held in a Laboratory where the student will be given two hours to individually implement the numerical methods necessary for the solution of the assigned questions. These questions will be based on finite difference methods with fixed stepsize for Boundary Value Problems, fixed stepsize methods for initial value problems and the Method of Lines for Partial Differential Equations. A pass will be given for a mark of 15/30 or higher. To be admitted to the second part of the exam, the oral, it is required to have first passed the written part. Marks for the written part will remain valid until, and not after, the beginning of the following semester. The oral exam will be based on all the material presented during the course, with the exception of the details of the Discrete Fourier Transform. The final course mark will be the average of the marks for the two parts of the exam.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE