## Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

## Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

## Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Period | From | To |
---|---|---|

I semestre | Oct 1, 2015 | Jan 29, 2016 |

II semestre | Mar 1, 2016 | Jun 10, 2016 |

Session | From | To |
---|---|---|

Sessione straordinaria Appelli d'esame | Feb 1, 2016 | Feb 29, 2016 |

Sessione estiva Appelli d'esame | Jun 13, 2016 | Jul 29, 2016 |

Sessione autunnale Appelli d'esame | Sep 1, 2016 | Sep 30, 2016 |

Session | From | To |
---|---|---|

Sess. autun. App. di Laurea | Oct 12, 2015 | Oct 12, 2015 |

Sess. autun. App. di Laurea | Nov 26, 2015 | Nov 26, 2015 |

Sess. invern. App. di Laurea | Mar 15, 2016 | Mar 15, 2016 |

Sess. estiva App. di Laurea | Jul 19, 2016 | Jul 19, 2016 |

Sess. autun. 2016 App. di Laurea | Oct 11, 2016 | Oct 11, 2016 |

Sess. autun 2016 App. di Laurea | Nov 30, 2016 | Nov 30, 2016 |

Sess. invern. 2017 App. di Laurea | Mar 16, 2017 | Mar 16, 2017 |

Period | From | To |
---|---|---|

Festività dell'Immacolata Concezione | Dec 8, 2015 | Dec 8, 2015 |

Vacanze di Natale | Dec 23, 2015 | Jan 6, 2016 |

Vacanze Pasquali | Mar 24, 2016 | Mar 29, 2016 |

Anniversario della Liberazione | Apr 25, 2016 | Apr 25, 2016 |

Festa del S. Patrono S. Zeno | May 21, 2016 | May 21, 2016 |

Festa della Repubblica | Jun 2, 2016 | Jun 2, 2016 |

Vacanze estive | Aug 8, 2016 | Aug 15, 2016 |

## Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.

To view all the exam sessions available, please use the Exam dashboard on ESSE3.

If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

## Academic staff

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.itMagazzini Laura

laura.magazzini@univr.it 045 8028525Rossi Francesco

Zini Giovanni

## Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.**Please select your Study Plan based on your enrollment year.**

1° Year

Modules | Credits | TAF | SSD |
---|

2° Year activated in the A.Y. 2016/2017

Modules | Credits | TAF | SSD |
---|

3° Year activated in the A.Y. 2017/2018

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

Modules | Credits | TAF | SSD |
---|

#### Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

### Numerical methods for differential equations (2017/2018)

Teaching code

4S00704

Teacher

Coordinator

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/08 - NUMERICAL ANALYSIS

Period

I sem. dal Oct 2, 2017 al Jan 31, 2018.

## Learning outcomes

The course will discuss, from both the analytic and computational points of view, the main methods for the numerical solution of Ordinary Differential Equations and classical Partial Differential Equations. Exponential Integrators, a current topic of active research in Applied Mathematics, will also be briefly discussed. The course has an important Laboratory component where the methods studied will be implemented using the MATLAB programming platform (using either the official Matlab from Mathworks or else the open source version GNU OCTAVE). At the end of the course the student will be expected to demonstrate that s/he has attained a level of competence in the computational and computer aspects of the course subject, the numerical solution of differential equations.

## Program

The course will discuss the following topics:

* Boundary Value Problems: Finite Difference methods, Finite Elements, introduction to Spectral Methods (collocation, discrete Fourier Transform, Galerkin)

* Ordinary Differential Equations: numerical methods for initial value problems, step methods (theta method, variable stepsize Runge-Kutta, introduction to Exponential Integrators) and multistep, stability, absolute stability.

* Partial Differential Equations: basic properties of some of the classical PDEs (Laplace, Heat and Transport), the Method of Lines.

It is expected that there will be a tutor to help with the correction of assigned exercises and with the Laboratory sessions.

Author | Title | Publishing house | Year | ISBN | Notes |
---|---|---|---|---|---|

Arieh Iserles | A First Course in the Numerical Analysis of Differential Equations (Edizione 2) | Cambridge University Press | 2009 | 9780521734905 |

## Examination Methods

The purpose of the exam is to see if the student is able to recall and produce the theory of numerical methods for differential equations presented during the lectures and Laboratory and knows how to use Computer resources for possible further investigation. Moreover, the student must show that s/he knows how to program in the specific software introduced during the course. The exam will consist of two parts. The first part will be held in a Laboratory where the student will be given two hours to individually implement the numerical methods necessary for the solution of the assigned questions. These questions will be based on finite difference methods with fixed stepsize for Boundary Value Problems, fixed stepsize methods for initial value problems and the Method of Lines for Partial Differential Equations. A pass will be given for a mark of 15/30 or higher. To be admitted to the second part of the exam, the oral, it is required to have first passed the written part. Marks for the written part will remain valid until, and not after, the beginning of the following semester. The oral exam will be based on all the material presented during the course, with the exception of the details of the Discrete Fourier Transform. The final course mark will be the average of the marks for the two parts of the exam.

**Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE**

## Type D and Type F activities

**Modules not yet included**

## Career prospects

## Module/Programme news

##### News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.

## Graduation

## Documents

Title | Info File |
---|---|

1. Come scrivere una tesi | pdf, it, 31 KB, 29/07/21 |

2. How to write a thesis | pdf, it, 31 KB, 29/07/21 |

5. Regolamento tesi | pdf, it, 171 KB, 20/03/24 |

## List of thesis proposals

theses proposals | Research area |
---|---|

Formule di rappresentazione per gradienti generalizzati | Mathematics - Analysis |

Formule di rappresentazione per gradienti generalizzati | Mathematics - Mathematics |

Proposte Tesi A. Gnoatto | Various topics |

Mathematics Bachelor and Master thesis titles | Various topics |

THESIS_1: Sensors and Actuators for Applications in Micro-Robotics and Robotic Surgery | Various topics |

THESIS_2: Force Feedback and Haptics in the Da Vinci Robot: study, analysis, and future perspectives | Various topics |

THESIS_3: Cable-Driven Systems in the Da Vinci Robotic Tools: study, analysis and optimization | Various topics |

## Attendance

As stated in the Teaching Regulations for the A.Y. 2022/2023, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.

## Career management

## Student login and resources

## Erasmus+ and other experiences abroad

## Orientamento in itinere per studenti e studentesse

La commissione ha il compito di guidare le studentesse e gli studenti durante l'intero percorso di studi, di orientarli nella scelta dei percorsi formativi, di renderli attivamente partecipi del processo formativo e di contribuire al superamento di eventuali difficoltà individuali.

E' composta dai proff. Sisto Baldo, Marco Caliari, Francesca Mantese, Giandomenico Orlandi e Nicola Sansonetto