Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I sem. | Oct 2, 2017 | Jan 31, 2018 |
II sem. | Mar 1, 2018 | Jun 15, 2018 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 1, 2018 | Feb 28, 2018 |
Sessione estiva d'esame | Jun 18, 2018 | Jul 31, 2018 |
Sessione autunnale d'esame | Sep 3, 2018 | Sep 28, 2018 |
Session | From | To |
---|---|---|
Sessione di laurea estiva | Jul 12, 2018 | Jul 12, 2018 |
Sessione autunnale di laurea | Oct 19, 2018 | Oct 19, 2018 |
Sessione di laurea invernale | Mar 14, 2019 | Mar 14, 2019 |
Period | From | To |
---|---|---|
Christmas break | Dec 22, 2017 | Jan 7, 2018 |
Easter break | Mar 30, 2018 | Apr 3, 2018 |
Patron Saint Day | May 21, 2018 | May 21, 2018 |
VACANZE ESTIVE | Aug 6, 2018 | Aug 19, 2018 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff

Vallini Giovanni
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
One course to be chosen among the following
2° Year activated in the A.Y. 2018/2019
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
One course to be chosen among the following
Modules | Credits | TAF | SSD |
---|
One course to be chosen among the following
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Omics sciences (2017/2018)
The teaching is organized as follows:
MODULO II
Credits
6
Period
See the unit page
Academic staff
See the unit page
MODULO I
Credits
6
Period
See the unit page
Academic staff
See the unit page
Learning outcomes
------------------------
MM: MODULO II
------------------------
------------------------ MM: Metabolomica laboratorio ------------------------ The student will learn the complexity of the various steps of a metabolomics experiment, from the experimental design to the preparation and analysis of the samples (“wet lab”), up to the process and analysis of the data (“dry lab”), through the realization of a “a real world” metabolomics experiment. ------------------------ MM: Proteomica laboratorio ------------------------ To furnish practical knowledge on how to perform a proteomic analysis. ------------------------ MM: Proteomica teoria ------------------------ To furnish the theoretical basis on how to perform a proteomic analysis.
------------------------
MM: MODULO I
------------------------
------------------------ MM: Metabolomica teoria ------------------------ The main objective of the course is to introduce the metabolomics analysis as an instrument to investigate the biological complexity of cells/tissues/organs/organisms from the point of view of the small molecules, that are the intermediate and end products of the metabolism. The metabolomics approach will be described as pipeline, a chain of connected steps from the experiment design up to the analysis and the data modeling. ------------------------ MM: Trascrittomica laboratorio ------------------------ ------------------------ MM: Trascrittomica teoria ------------------------
Program
------------------------
MM: MODULO II
------------------------
------------------------ MM: Metabolomica laboratorio ------------------------ -Simulation of a “real world” experimental design of a metabolomics and transcriptomics experiments: the students, organized in work group, will receive an experimental problem and virtual resources (biological resources, department facilities, lab instrumentation and budget), and will be required to lay down an experimental plan. -Extraction of plant medium an low polar metabolites, cleaning of samples through Solid Phase Extraction, visit to the LC-MS facilities. -LC-MS-based -untargeted metabolomics: recognition of molecular ions in LC-MS chromatogram; fragmentation trees; metabolite identification through m/z values and fragmentation trees; -chromatogram processing and Feature Quantification Matrix building; -multivariate and univariate data analysis. ------------------------ MM: Proteomica laboratorio ------------------------ 1. Introduction. 2. Sample preparation. 3. Gel-Based Proteomics. 4. Gel-Free Proteomics. 5. Saple pre-fractionations and analysis of low abundant proteins. 6. Proteins and peptides mass spettrometry and mass/mass spectrometry. 7. Protein identification methods and Protein Database Search. 8. Quantitative Proteomics. 9. Examples of proteomics applied to food. ------------------------ MM: Proteomica teoria ------------------------ 1. Introduction. 2. Sample preparation. 3. Gel-Based Proteomics. 4. Gel-Free Proteomics. 5. Saple pre-fractionations and analysis of low abundant proteins. 6. Proteins and peptides mass spettrometry and mass/mass spectrometry. 7. Protein identification methods and Protein Database Search. 8. Quantitative Proteomics. 9. Examples of proteomics applied to food.
------------------------
MM: MODULO I
------------------------
------------------------ MM: Metabolomica teoria ------------------------ -the experimental design; -metabolite extraction and preparation for LC-MS; -data formats and conversion; -chromatogram analysis and metabolite annotation; -data preprocessing; the effect of the technique of data normalization; -data processing (with MZmine): m/z feature extraction, chromatogram deconvolution and alignement; production of the Feature Quantification Matrix; -data analysis through multivariate analysis (PCA, PLS-DA, OPLS-DA) and univariate analysis. ------------------------ MM: Trascrittomica laboratorio ------------------------ ------------------------ MM: Trascrittomica teoria ------------------------
Examination Methods
------------------------
MM: MODULO II
------------------------
------------------------ MM: Metabolomica laboratorio ------------------------ After a public presentation and a critical discussion of the work of each groups, each student will have a score (from 0 to 2) that will additively contribute to the final partial score of the metabolomics examination ------------------------ MM: Proteomica laboratorio e teoria: open questions related to the theoretical aspects of proteomic analysis and technical aspects of the practicals. Written 2 hours. -
------------------------
MM: MODULO I
------------------------
------------------------ MM: Metabolomica teoria ------------------------ The examination will be an oral test aimed to verify : -the overall degree of knowledge of the subject of this course; -the scientific language skills. ------------------------ MM: Trascrittomica laboratorio ------------------------ ------------------------ MM: Trascrittomica teoria ------------------------
Type D and Type F activities
Modules not yet included
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Graduation
Deadlines and administrative fulfilments
For deadlines, administrative fulfilments and notices on graduation sessions, please refer to the Graduation Sessions - Science and Engineering service.
Need to activate a thesis internship
For thesis-related internships, it is not always necessary to activate an internship through the Internship Office. For further information, please consult the dedicated document, which can be found in the 'Documents' section of the Internships and work orientation - Science e Engineering service.
Final examination regulations
List of thesis proposals
theses proposals | Research area |
---|---|
Dinamiche della metilazione del DNA e loro contributo durante il processo di maturazione della bacca di vite. | Various topics |
Miglioramento del profilo nutrizionale e funzionale di sfarinati di cereali mediante fermentazione con batteri lattici | Various topics |
Risposte trascrittomiche a sollecitazioni ambientali in vite | Various topics |
Studio delle basi genomico-funzionali del processo di embriogenesi somatica in vite | Various topics |
Attendance modes and venues
As stated in the Didactic Regulations, there is no generalised obligation of attendance. Individual lecturers are, however, free to require a minimum number of hours of attendance for eligibilitỳ for the profit exam of the teaching they teach. In such cases, attendance of teaching activities is monitored in accordance with procedures communicated in advance to students.
Part-time enrolment is permitted. Find out more on the Part-time enrolment possibilities page.
The course's teaching activities take place in the Science and Engineering area, which is composed of the buildings of Ca‘ Vignal 1, Ca’ Vignal 2, Ca' Vignal 3 and Piramide, located in the Borgo Roma cluster, and Villa Lebrecht and Villa Eugenia located in the San Floriano di Valpolicella cluster.
Lectures are held in the classrooms of Ca‘ Vignal 1, Ca’ Vignal 2 and Ca' Vignal 3, while practical exercises take place in the teaching laboratories dedicated to the various activities.