Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Biotecnologie - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2018/2019
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2019/2020
Insegnamenti | Crediti | TAF | SSD |
---|
Un insegnamento a scelta
Un insegnamento a scelta
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Un insegnamento a scelta
Un insegnamento a scelta
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Chimica fisica (2018/2019)
Codice insegnamento
4S00097
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
CHIM/02 - CHIMICA FISICA
L'insegnamento è organizzato come segue:
teoria
laboratorio [laboratorio 1° turno]
laboratorio [laboratorio 2° turno]
Obiettivi formativi
TEORIA
Il Corso di propone di fornire allo studente gli strumenti fondamentali per comprendere ed interpretare fenomeni chimico-fisici riguardanti sistemi di interesse biologico e biotecnologico, anche attraverso l’impiego di modelli teorici. Lo studente acquisirà la capacità di applicare concetti chimico-fisici a processi reali allo scopo di quantificare osservabili, di tipo termodinamico, di trasporto, cinetico e spettroscopico.
Verranno trattati dei casi esemplificativi riguardanti vari aspetti chimico-fisici per far acquisire familiarità nella soluzione di problemi reali.
LABORATORIO
Il corso prevede anche alcune esperienze pratiche di laboratorio per fornire manualità e capacità critica nell'affrontare problematiche reali chimico-fisiche, oltre che a fornire nozioni su metodiche e attrezzature moderne per la misura di variabili termodinamiche, costanti cinetiche, nonché per studiare proprietà elettroniche e vibrazionali di molecole, in particolare di interesse biologico.
Programma
TEORIA
Termodinamica.
Richiamo ai concetti di calore e lavoro. Capacità termica.
Energia interna, entalpia e loro variazioni con la temperatura.
Entalpia di transizione di fase. Entalpia standard di reazione e sua variazione con la temperatura.
Entropia e sue variazioni con la temperatura. Entropia di transizione di fase. Cenni all'interpretazione statistica dell'Entropia. Entropia standard di reazione.
Energia libera di Gibbs e sua variazione con pressione e temperatura. Condizione di stabilità e diagrammi di fase. Definizione di potenziale chimico. Potenziale chimico dei componenti di miscele gassose e soluzioni ideali.
Energia libera di reazione e relazione con le condizioni di reazione. Condizioni di equilibrio. Variazione della costante di equilibrio con la temperatura. Energia libera di mescolamento tra fluidi ideali.
Misura di osservabili termodinamiche per processi di interesse biologico.
Termodinamica statistica: cenni alla distribuzione di Boltzmann, alle funzioni di partizione e loro correlazione con proprietà termodinamiche.
Cinetica chimica.
Richiamo alle leggi di velocità, costanti cinetiche ed equazione di Arrhenius. Stato di transizione ed energia di attivazione. Schemi di reazione: approccio all'equilibrio e metodi di rilassamento. Reazioni consecutive. Calcolo di leggi di velocità da meccanismi di reazione. Rate Determining Step. Approssimazione dello stato stazionario. Pre-equilibrio. Reazioni chimiche controllate dalla diffusione o dall'attivazione. Controllo cinetico di una reazione chimica.
Struttura energetica molecolare. Spettroscopie molecolari.
Cenni alla teoria quantistica. Particelle in sistemi confinati. Oscillatore armonico e modi vibrazionali molecolari. Livelli energetici e orbitali molecolari per molecole biatomiche. Approssimazione LCAO. Cenni ai livelli energetici per molecole poliatomiche.
Transizioni spettroscopiche nelle regioni spettrali dell'ultravioletto, del visibile e dell'infrarosso. Decadimento degli stati eccitati. Transizioni radiative e non radiative. Fluorescenza e fosforescenza. Quenching della fluorescenza. Trasferimenti di energia tra particelle.
Principi di spettroscopia di risonanza magnetica nucleare (NMR).
Applicazioni della spettroscopia per l'analisi della struttura energetica di molecole di interesse biologico.
Sistemi colloidali.
Dispersioni colloidali e loro stabilità. Esempi di colloidi di importanza biologica. Cenni a sistemi nanocristallini. Raggio idrodinamico e potenziale Zeta di colloidi e loro misura con metodo Dynamic Light Scattering (DLS).
ESERCITAZIONI DI LABORATORIO
Esperienze su:
- valutazione di capacità termica di un calorimetro ed entalpia di reazione per una reazione di neutralizzazione mediante misure calorimetriche.
- determinazione dei parametri cinetici per la reazione tra acqua ossigenata e ioni ioduro in ambiente acido.
- studio delle transizioni spettroscopiche della fluoresceina nel visibile mediante misura e analisi degli spettri di assorbimento e fluorescenza; indagine sullo spegnimento della fluorescenza della fluorescina con lo ione ioduro e sul relativo meccanismo.
- studio delle proprietà vibrazionali di semplici molecole organiche mediante spettroscopia Raman; misura e interpretazione di spettri NMR di semplici molecole organiche; misura di raggio idrodinamico e potenziale Zeta per macromolecole e per nanoparticelle; studio delle proprietà dicroiche di macromolecole.
Bibliografia
Attività | Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|---|
teoria | Peter Atkins, Julio de Paula | Elementi di Chimica Fisica (Edizione 4) | Zanichelli | 2018 | 9788808220684 | |
teoria | Peter Atkins, Julio de Paula | Physical Chemistry for the Life Sciences (Edizione 2) | Oxford University Press | 2011 | 9780199564286 | |
laboratorio | Speghini Adolfo | Dispense per esercitazioni di laboratorio di Chimica Fisica (Edizione 1) | 2019 |
Modalità d'esame
La prova d'esame consiste nello svolgimento di un elaborato scritto, comprendente domande sull'intero programma del Corso, finalizzate ad accertare la conoscenza dello studente sui contenuti del Corso. Particolare attenzione sarà rivolta alla padronanza dei concetti della Chimica-Fisica e la padronanza delle metodiche, degli strumenti e delle tecniche usate nelle esperienze di laboratorio.
Per entrambi gli studenti frequentanti e non frequentanti le materie dell'esame copriranno tutti gli argomenti discussi sia nella parte teorica che in quella delle esercitazioni di laboratorio.
Per la parte di laboratorio è richiesto un elaborato scritto riguardante le metodiche e i risultati ottenuti durante le esperienze di laboratorio.