Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
I semestre 1-ott-2018 31-gen-2019
II semestre 4-mar-2019 14-giu-2019
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esame 1-feb-2019 28-feb-2019
Sessione estiva d'esame 17-giu-2019 31-lug-2019
Sessione autunnale d'esame 2-set-2019 30-set-2019
Sessioni di lauree
Sessione Dal Al
Sessione di laurea estiva 22-lug-2019 22-lug-2019
Sessione di laurea autunnale 15-ott-2019 15-ott-2019
Sessione di laurea autunnale straordinaria 21-nov-2019 21-nov-2019
Sessione di laurea invernale 19-mar-2020 19-mar-2020
Vacanze
Periodo Dal Al
Sospensione attività didattica 2-nov-2018 3-nov-2018
Vacanze di Natale 24-dic-2018 6-gen-2019
Vacanze di Pasqua 19-apr-2019 28-apr-2019
Vacanze estive 5-ago-2019 18-ago-2019

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D F G L M O P R S Z

Agostiniani Virginia

virginia.agostiniani@univr.it +39 045 802 7979

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Fioroni Tamara

tamara.fioroni@univr.it 0458028489

Gnoatto Alessandro

alessandro.gnoatto@univr.it 045 802 8537

Gonzato Guido

guido.gonzato@univr.it 045 802 8303

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Magazzini Laura

laura.magazzini@univr.it 045 8028525

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Mariotto Gino

gino.mariotto@univr.it +39 045 8027031

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Piccinelli Fabio

fabio.piccinelli@univr.it +39 045 802 7097

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zuccher Simone

simone.zuccher@univr.it

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Lingua inglese competenza linguistica - liv. B1 (completo)
6
E
-
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-

2° Anno

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
6
B
MAT/06
Lingua inglese competenza linguistica - liv. B1 (completo)
6
E
-

3° Anno

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Tra gli anni: 1°- 2°- 3°
Ulteriori attività formative
6
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




SStage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00244

Crediti

9

Offerto anche nei corsi

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/05 - ANALISI MATEMATICA

L'insegnamento è organizzato come segue:

Parte I teoria

Crediti

5

Periodo

II semestre

Parte II Esercitazioni

Crediti

2

Periodo

II semestre

Parte I esercitazioni

Crediti

1

Periodo

II semestre

Parte II teoria

Crediti

1

Periodo

II semestre

Obiettivi formativi

Il corso si propone di introdurre la teoria e alcune applicazioni dei sistemi dinamici continui e discreti, che descrivono l’evoluzione temporale di variabili quantitative.
Al termine del corso lo studente sarà in grado di investigare la stabilità e la relativa natura di un equilibrio, l’analisi qualitativa di un sistema di equazioni differenziali ordinarie e il ritratto in fase di un sistema dinamico in dimensione 1 e 2.
Lo studente sarà altresì in grado di investigare la presenza di cicli limite e la loro natura e di analizzare le applicazioni di base dei sistemi dinamici alla dinamica delle popolazioni, alla meccanica e ai modelli di traffico. Infine sarà in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di sistemi dinamici e applicazioni.

Programma

Modulo 1. Complementi sulle equazioni differenziali ordinarie.
Ripasso su equazioni differenziali del primo ordine lineari, equazioni differenziali del secondo ordine a coefficienti costanti, metodo della variazione delle costanti. Teorema di esistenza e unicita`. Teoria qualitativa delle Equazioni Differenziali Ordinarie: soluzioni massimali, lemmi di Gronwall e del confronto. Soluzione esplicita di equazioni particolari: a variabili separabili, di Riccati, totali. Sistemi lineari.

Modulo 2. ODE come campi vettoriali, analisi qualitativa dello spazio delle fasi.
Orbite e spazio delle fasi. Equilibri, ritratto in fase di dimensione 1, equazioni del secondo ordine e relativi equilibri. Linearizzazione attorno ad un equilibrio, soluzioni periodiche.

Modulo 3. Sistemi lineari.
Sistemi lineari in R2, matrice diagonalizzabile, autovalori reali e non reali. Il caso nilpotente. Diagramma di biforcazione in R2. Sistemi lineari in Rn, sottospazi stabile, instabile e centrale. Linearizzazione attorno ai punti di equilibrio.

Modulo4. Flusso e coniugazione di flussi.
Dipendenza dai dati iniziali, flusso di un campo vettoriale. Dipendenza dai parametri. Equazioni differenziali dipendenti dal tempo. Coniugazione di flussi e cambi di coordinate, push–forward e pull-back. Cambi di coordinate dipendenti dal tempo, riscalamenti di campi vettoriali e riparametrizzazioni del tempo. Teorema di rettificazione locale.

Modulo 5. Integrali primi.
Insiemi invarianti, integrali primi e la derivata di Lie. Foliazioni invarianti e abbassamento dell’ordine. Integrali primi e attrattivita` degli equilibri.

Modulo 6. Equazione di Newton 1-dimensionale.
Ritratto in fase nel caso conservativo. Linearizzazione. Abbassamento dell’ordine e legge oraria. Sistemi con dissipazione.

Modulo 7. Stabilita` degli equilibri. Stabilita` alla Lyapunov, il metodo delle funzioni di Lyapunov e il metodo spettrale.
Applicazioni e laboratorio numerico.

Modulo 8. Biforcazioni ed applicazioni.
Nozione di biforcazione in una dimensione, biforcazione degli equilibri. Applicazioni.

Modulo 9. Introduzione al calcolo delle variazioni 1-dimensionale.
Funzioni di Lagrange e funzionale d’azione. Differenziale di Gateaux e stazionarizzazione di un funzionale. Equazioni di Euler-Lagrange. Funzione di Jacobi e invarianza per trasformazioni puntuali estese. Problema geodetico e problema meccanico.

Modulo 10. Meccanica Hamiltoniana.
Funzione di Hamilton, equazioni canoniche, campi vettoriali Hamiltoniani e dinamica Hamiltoniana. Trasformazione di Legendre. Parentesi di Poisson, algebra di Poisson e integrali primi. Trasformazioni canoniche. Condizioni di canonicita`, condizione di Lie e funzioni generatrici. Equazione di Hamilton-Jacobi e cenni ai sistemi integrabili. Geometria dello spazio delle fasi: teorema del ritorno e teorema di Liouville.

Bibliografia

Testi di riferimento
Attività Autore Titolo Casa editrice Anno ISBN Note
Parte I teoria G. Benettin Appunti per il corso di Fisica Matematica 2017
Parte I teoria G. Benettin Appunti per il corso di Meccanica Analitica 2018
Parte I teoria F. Fasso` Primo sguardo ai sistemi dinamici CLEUP 2016
Parte I teoria G. Benettin Una passeggiata tra i Sistemi Dinamici 2012
Parte II Esercitazioni M.W. Hirsch e S. Smale Differential equations, dynamical systems, and linear algebra Academic Press 1974
Parte II Esercitazioni S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press 2010
Parte II Esercitazioni F. Fasso` Primo sguardo ai sistemi dinamici CLEUP 2016
Parte II teoria M.W. Hirsch e S. Smale Differential equations, dynamical systems, and linear algebra Academic Press 1974
Parte II teoria S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Westview Press 2010
Parte II teoria F. Fasso` Primo sguardo ai sistemi dinamici CLEUP 2016

Modalità d'esame

Una prova scritta di esercizi: ritratto di fase in 2D per un sistema dinamico non-lineare; calcolo di traiettorie e stabilità per un sistema in tempo discreto, ritratto di fase in 2D per un sistema dinamico non- lineare; calcolo di traiettorie e stabilità per un sistema in tempo discreto; studio della stabilità di un sistema.
La prova scritta verifica i seguenti obbiettivi formativi:
- aver adeguate capacità di analisi;
- avere adeguate competenze computazionali;
- essere in grado di formalizzare matematicamente problemi formulati nel linguaggio naturale;
- avere la capacità di costruire e sviluppare modelli matematici per le scienze fisiche e naturali

Una prova orale con 2-3 domande di teoria. La prova è obbligatoria
e va sostenuta all’interno della sessione in cui viene superata la prova scritta, pena la decadenza della
validita` della prova scritta.
La prova orale verifica i seguenti obbiettivi formativi:
- essere in grado di produrre e riconoscere dimostrazioni rigorose.

Tipologia di Attività formativa D e F

Insegnamenti non ancora inseriti

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Prova Finale

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

1. La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.
2. La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.
3. La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.
4. La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.
5. La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in TAF F o in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.
6. La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.
 

Allegati

Titolo Info File
Doc_Univr_pdf 1. Come scrivere una tesi 31 KB, 29/07/21 
Doc_Univr_pdf 2. How to write a thesis 31 KB, 29/07/21 
Doc_Univr_pdf 4. Regolamento tesi (valido da luglio 2020) 259 KB, 29/07/21 
Doc_Univr_pdf 5. Regolamento tesi (valido da luglio 2022) 171 KB, 17/02/22 

Elenco delle proposte di tesi e stage

Proposte di tesi Area di ricerca
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Proposte Tesi A. Gnoatto Argomenti vari
Tesi assegnate a studenti di matematica Argomenti vari
Stage Area di ricerca
Proposte di stage per studenti di matematica Argomenti vari

Modalità di frequenza

Come riportato al punto 25 del Regolamento Didattico per l'A.A. 2021/2022, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.
Per le modalità di erogazione della didattica, si rimanda alle informazioni in costante aggiornamento dell'Unità di Crisi.

Gestione carriere


Area riservata studenti