Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
I semestre | Oct 1, 2019 | Jan 31, 2020 |
II semestre | Mar 2, 2020 | Jun 12, 2020 |
Session | From | To |
---|---|---|
Sessione invernale d'esame | Feb 3, 2020 | Feb 28, 2020 |
Sessione estiva d'esame | Jun 15, 2020 | Jul 31, 2020 |
Sessione autunnale d'esame | Sep 1, 2020 | Sep 30, 2020 |
Session | From | To |
---|---|---|
Sessione estiva di laurea LM9 | Jul 14, 2020 | Jul 14, 2020 |
Sessione autunnale di laurea LM9 | Oct 9, 2020 | Oct 9, 2020 |
Sessione invernale di laurea LM9 | Mar 12, 2021 | Mar 12, 2021 |
Period | From | To |
---|---|---|
Festa di Ognissanti | Nov 1, 2019 | Nov 1, 2019 |
Festa dell'Immacolata | Dec 8, 2019 | Dec 8, 2019 |
Vacanze di Natale | Dec 23, 2019 | Jan 6, 2020 |
Vacanze di Pasqua | Apr 10, 2020 | Apr 14, 2020 |
Festa della Liberazione | Apr 25, 2020 | Apr 25, 2020 |
Festa del lavoro | May 1, 2020 | May 1, 2020 |
Festa del Santo Patrono | May 21, 2020 | May 21, 2020 |
Festa della Repubblica | Jun 2, 2020 | Jun 2, 2020 |
vacanze estive | Aug 10, 2020 | Aug 23, 2020 |
Exam calendar
Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Should you have any doubts or questions, please check the Enrolment FAQs
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.
Modules | Credits | TAF | SSD |
---|
1° Year
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Computational genomics (2019/2020)
Teaching code
4S003667
Teacher
Coordinatore
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
BIO/18 - GENETICS
Period
II semestre dal Mar 2, 2020 al Jun 12, 2020.
Learning outcomes
The advent of the new sequencing technology (Next Generation Sequencing, NGS) had a great impact on the ability to study genome complexity at genomic, transcriptomic and epigenetic level and provided interesting opportunities for the development of bioinfomatic resources for data analyses and management. The course will provide a general overview of the main computational methods based in NGS data that can be applied in genomic studies (mainly focused on the human genome) as for example , sequence alignment, genome sequencing, genome resequencing for the identification of variants, transcriptomic analysis for the identification of differentially expressed genes. At the end of the course the student should be able to: Know the main data file formats Know the different algorithm used in genomic studies and their applications Setting up a pipeline for data managing and analysis
Program
1. Introduction to Next Generation Sequencing (NGS) data
• Biases and sequencing errors of Illumina technology
• FastQ file format
• Quality reads assessment (FastQC software)
• Reads preprocessing
2. Overview of bioinformatics methods for genome assembly
• Overlap-layout-consensus
• Debrujin graph
• Genome assembly assessment
3. Sequence alignment of NGS data
• Dynamic programming
• Heuristic methods
• SAM/BAM format
4. Resequencing and variant calling
• Identification of germline variants
• Identification of somatic variants
• Bioinformatics methods for the identification of structural variations (Insertion and Deletion, Translocation,Copy number variation)
• Variant Calling File (VCF) format and Genomic VCF format
5. Computational tools for prioritizing candidate genes
6. Transcriptomic analysis and RNA-seq
• RNA-seq genome alignment (TopHat, STAR)
• Transcripts reconstruction
• Gene quantification
• Data normalization
• Identification of differentially expressed genes
• Gene enrichment and gene set analysis
Bioinformatics laboratory
• Introduction to bash and linux operative system
• Usage of FastQC software for sequence quality assessment
• Setting up of a pre-processing sequence pipeline
• Sequence alignment with bowtie2
• BAM/SAM file manipulation
Examination Methods
The exam consists of a written verification of the level of knowledge regarding the argument of the course. The exam consist of six open questions. The student need to demonstrate the understanding of the method and application of the major bioinformatic programs and approaches learned during the course.
Type D and Type F activities
years | Modules | TAF | Teacher |
---|---|---|---|
2° | Python programming language | D |
Maurizio Boscaini
(Coordinatore)
|
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.
Further services
I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.
Graduation
List of theses and work experience proposals
theses proposals | Research area |
---|---|
Studio delle proprietà di luminescenza di lantanidi in matrici proteiche | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - Colloid chemistry |
Stampa 3D di nanocompositi polimerici luminescenti per applicazioni in Nanomedicina | Synthetic Chemistry and Materials: Materials synthesis, structure-properties relations, functional and advanced materials, molecular architecture, organic chemistry - New materials: oxides, alloys, composite, organic-inorganic hybrid, nanoparticles |
3D-bioprinting biofabrication laboratory | Various topics |
Organ on-a-chip | Various topics |
Attendance
As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, attendance is not mandatory. However, professors may require students to attend lectures for a minimum of hours in order to be able to take the module exam, in which case the methods that will be used to check attendance will be explained at the beginning of the module.Please refer to the Crisis Unit's latest updates for the mode of teaching.