Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

A.A. 2020/2021

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
I semestre Oct 1, 2020 Jan 29, 2021
II semestre Mar 1, 2021 Jun 11, 2021
Exam sessions
Session From To
Sessione invernale d'esame Feb 1, 2021 Feb 26, 2021
Sessione estiva d'esame Jun 14, 2021 Jul 30, 2021
Sessione autunnale d'esame Sep 1, 2021 Sep 30, 2021
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2021 Jul 22, 2021
Sessione di laurea autunnale Oct 14, 2021 Oct 14, 2021
Sessione di laurea autunnale - Dicembre Dec 9, 2021 Dec 9, 2021
Sessione invernale di laurea Mar 16, 2022 Mar 16, 2022
Holidays
Period From To
Festa dell'Immacolata Dec 8, 2020 Dec 8, 2020
Vacanze Natalizie Dec 24, 2020 Jan 3, 2021
Vacanze di Pasqua Apr 2, 2021 Apr 6, 2021
Festa del Santo Patrono May 21, 2021 May 21, 2021
Festa della Repubblica Jun 2, 2021 Jun 2, 2021
Vacanze Estive Aug 9, 2021 Aug 15, 2021

Exam calendar

Exam dates and rounds are managed by the relevant Science and Engineering Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

A B C D F G I M N O P R S V Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Canevari Giacomo

giacomo.canevari@univr.it +39 045 8027979

Chignola Roberto

roberto.chignola@univr.it 045 802 7953

Cubico Serena

serena.cubico@univr.it 045 802 8132

Daffara Claudia

claudia.daffara@univr.it +39 045 802 7942

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo

massimo.delledonne@univr.it 045 802 7962; Lab: 045 802 7058

De Sinopoli Francesco

francesco.desinopoli@univr.it 045 842 5450

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Favretto Giuseppe

giuseppe.favretto@univr.it +39 045 802 8749 - 8748

Fioroni Tamara

tamara.fioroni@univr.it 0458028489

Gnoatto Alessandro

alessandro.gnoatto@univr.it 045 802 8537

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mattiolo Davide

davide.mattiolo@univr.it

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Monti Francesca

francesca.monti@univr.it 045 802 7910

Nardon Chiara

chiara.nardon@univr.it

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Patacca Marco

marco.patacca@univr.it

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sala Pietro

pietro.sala@univr.it 0458027850

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Segala Roberto

roberto.segala@univr.it 045 802 7997

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Vincenzi Elia

elia.vincenzi@univr.it

Zuccher Simone

simone.zuccher@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
English language B1 level
6
E
-
ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Final exam
6
E
-

2° Year

ModulesCreditsTAFSSD
6
A
(MAT/02)
6
B
(MAT/03)
6
C
(SECS-P/01)
6
C
(SECS-P/01)
English language B1 level
6
E
-

3° Year

ModulesCreditsTAFSSD
6
C
(SECS-P/05)
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S00393

Credits

12

Scientific Disciplinary Sector (SSD)

SECS-S/06 - MATHEMATICAL METHODS OF ECONOMICS, FINANCE AND ACTUARIAL SCIENCES

Language

Italian

Period

I semestre dal Oct 1, 2020 al Jan 29, 2021.

Learning outcomes

This course presents the basic models for the analysis and evaluation of financial operations, both under conditions of certainty and randomness. The main goal of the course is to equip the student with the ability to model and solve some basic mathematical problems, commonly encountered in the financial practice.

Program

The entire course will be available online. In addition, a number of the lessons (see the course
schedule) will be held in-class.

Part 1: classical financial mathematics - Main Reference: Scandolo

1) Basic financial operations, simple interest, interest in advance, compounding of interest, exponential regime.

2) Market rates. Some sketch of the classical theory with some warnings regarding the multiple curve phenomenon.

3) Annuities and amortization: non-elementary investment and financing, annuities with constant rates, annuities with installments following a geometric progression, amortization, common amortization clauses, amortization with viariable interest rate.

4) Choice without uncertainty: return for elementary and generic investment, choice criteria for investment and financing operations.

5) Bonds: classification, zero coupon bonds, fixed coupon bonds.

6) Term structure: yield curve, complete and incomplete markets.

7) Immunization: Maculay’s duration and convexity, immunized portfolios.

Part 2: mathematical finance in the presence of uncertainty - Main references: Föllmer Schied and Pascucci Runggaldier.

8) Probability theory refresher: probability spaces, independence, Radon-Nikodym theorem, expectation, conditional expectation, martingales, convergence of random variables.

9) Preferences and risk aversion: expected utility criterion (St. Petersburgh paradox), von Neumann Morgenstern axioms, stochastic dominance, mean variance criterion and static portfolio optimization, CAPM.

10) Arbitrage theory in one period: foundations and fundamental theorem of asset pricing, contingnt claimds, market completeness.

11) Arbitrage theory in multiperiod models: fundamental on multiperiod models, absence of arbitrage, European contingent claims, binomial model (Cox-Ross Rubinstein).

12) American contingent claims: foundataions, valuation and hedging, arbitrage free prices and replicability in general markets.

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
Pascucci, A. Runggaldier, W. J. Finanza matematica. Teoria e problemi per modelli multiperiodali (Edizione 1) Springer 2009 978-8-847-01441-1
Scandolo Giacomo Matematica Finanziaria Amon 2013
Scandolo Giacomo Matematica finanziaria - Esercizi Amon 2013
Föllmer, H. Schied, A. Stochastic Finance: An Introduction in Discrete Time (Edizione 4) De Gruyter 2016 978-3-110-46344-6

Examination Methods

Two-hour written exam. The exam consists of practical and theoretical exercises, including the proof of certain claims. The exam aims to verify the student's ability to identify the correct resolution, knowledge of basic financial laws and sophisticated assessment models, and the ability to apply acquired knowledge to concrete cases in new and variable contexts. The exam aims also to assess the level of understanding of the theoretical aspects of the lecture.

The assessment methods could change according to the academic rules.

Type D and Type F activities

Le attività formative in ambito D o F comprendono gli insegnamenti impartiti presso l'Università di Verona o periodi di stage/tirocinio professionale.
Nella scelta delle attività di tipo D, gli studenti dovranno tener presente che in sede di approvazione si terrà conto della coerenza delle loro scelte con il progetto formativo del loro piano di studio e dell'adeguatezza delle motivazioni eventualmente fornite.

 

I semestre From 10/1/20 To 1/29/21
years Modules TAF Teacher
1° 2° History and Didactics of Geology D Guido Gonzato (Coordinatore)
1° 2° 3° Algorithms D Roberto Segala (Coordinatore)
1° 2° 3° Scientific knowledge and active learning strategies F Francesca Monti (Coordinatore)
1° 2° 3° Genetics D Massimo Delledonne (Coordinatore)
II semestre From 3/1/21 To 6/11/21
years Modules TAF Teacher
1° 2° 3° Algorithms D Roberto Segala (Coordinatore)
1° 2° 3° Python programming language D Vittoria Cozza (Coordinatore)
1° 2° 3° Organization Studies D Giuseppe Favretto (Coordinatore)
List of courses with unassigned period
years Modules TAF Teacher
Subject requirements: mathematics D Rossana Capuani
1° 2° 3° ECMI modelling week F Not yet assigned
1° 2° 3° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° 3° Google summer of code (GSOC) F Not yet assigned
1° 2° 3° Introduzione all'analisi non standard F Sisto Baldo
1° 2° 3° C Programming Language D Pietro Sala (Coordinatore)
1° 2° 3° LaTeX Language D Enrico Gregorio (Coordinatore)

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Attendance

As stated in point 25 of the Teaching Regulations for the A.Y. 2021/2022, except for specific practical or lab activities, attendance is not mandatory. Regarding these activities, please see the web page of each module for information on the number of hours that must be attended on-site.
Please refer to the Crisis Unit's latest updates for the mode of teaching.

Graduation

Attachments

List of theses and work experience proposals

theses proposals Research area
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Gestione carriere


Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.