Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Matematica applicata - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2019/2020
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Attivato nell'A.A. 2020/2021
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Sistemi stocastici (2020/2021)
Codice insegnamento
4S00254
Docenti
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
Periodo
I semestre dal 1 ott 2020 al 29 gen 2021.
Obiettivi formativi
Il corso di Sistemi Stocastici si propone per obiettivo l'introduzione ai concetti di base della teoria soggiacente alla rigorosa descrizione matematica di dinamiche temporali di grandezze aleatorie. In particolare i prerequisiti del corso sono quelli di un corso standard di Probabilità per Matematica/Fisica. Si suppone che i discenti siano a conoscenza delle nozioni elementari del calcolo delle Probabilità, così come nell'assiomatica di Kolmogorov, con particolare riferimento alla conoscenza dei concetti di funzione di densità, ripartizione, probabilità condizionata, aspettazione condizionata, teoria della misura (di base),funzioni caratteristiche di variabili aleatorie, nozioni di convergenza (in misura, q.o., in Probabilità, etc.), teorema del limite centrale e sue (basilari) applicazioni, etc. Il corso di Sistemi Stocastici mira, in particolare, a fornire i concetti di base di: spazio di probabilità filtrato, martingala, tempo di arresto, teoremi di Doob, teoria delle catene di Markov a tempo discreto e continuo (classificazione degli stati, misure invarianti, limite, teorema ergodico, etc.), nozioni basilari sulla teoria delle code ed introduzione al moto Browniano. Una parte del corso è dedicata all'implementazione al calcolatore dei concetti operativi soggiacenti la trattazione dei sistemi stocastici del tipo catena di Markov, tanto a tempo discreto che continuo. Una parte del corso è dedicata all'introduzione ed allo studio operativo, per via di esercitazione al calcolatore, di serie temporali univariate. E' importante sottolineare come l'insegnamento di Sistemi Stocastici sia organizzato in modo tale che gli studenti possano concretamente completare ed ulteriormente sviluppare le proprie: capacità di analisi, sintesi ed astrazione; specifiche competenze computazionali ed informatiche; abilità di comprensione di testi, anche avanzati, di Matematica in generale e Matematica applicata in particolare; capacità di sviluppare modelli matematici per le scienze fisiche e naturali, essendo al contempo in grado di analizzarne i limiti e l'effettiva applicabilità, anche da un punto di vista computazionale; competenze atte allo sviluppo di opportuni modelli matematici e statistici per l’economia e per i mercati finanziari; capacità di estrarre informazioni qualitative da dati quantitativi; conoscenze di linguaggi di programmazione o software specifici.
Programma
Tutte le ore dell'insegnamento saranno disponibili online. Inoltre, una parte delle lezioni/tutte le lezioni (si veda l'orario)
saranno tenute anche in aula.
1. Catene di Markov a tempo discreto. Proprietà di Markov e probabilità di transizione. Irriducibilità, aperiodicità. Distribuzioni stazionarie. Distribuzioni reversibili.
2. Tempi di ingresso. Convergenza alla distribuzione stazionaria. Legge dei grandi numeri per catene di Markov. MCMC: algoritmo di Metropolis e Gibbs sampler.
3. Catene di Markov riducibili. Stati transitori e stati ricorrenti. Probabilità di assorbimento.
4.. Catene di Markov a stati numerabili. Ricorrenza e transitorietà della passeggiata aleatoria su Z^d. Stati ricorrenti positivi e distribuzioni stazionarie. Teorema di convergenza per catene di Markov irriducibili a stati numerabili.
5. Catene di Markov a tempo continuo. Il Processo di Poisson e sue proprietà. La proprietà di Markov a tempo continuo. Semigruppo associato ad una catena di Markov: continuità e derivabilità; generatore. Equazioni di Kolmogorov. Distribuzioni stazionarie. Formula di Dynkin. Costruzione probabilistica di una Catena di Markov a tempo continuo.
6. Grafi aleatori di Erdos-Renyi. Definizione del modello. Componenti connesse.
7. Valore atteso condizionale e distribuzione condizionale. Martingale. Teorema d'arresto e teorema di convergenza.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
Levin, David A., and Yuval Peres | Markov chains and mixing times | American Mathematical Society | 2017 |
Modalità d'esame
Prova scritta, con esercizi e domande teoriche.
La modalità d'esame potrebbe subire delle variazioni in funzione
dell'evolversi della situazione.