Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea in Matematica applicata - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

2° Year   activated in the A.Y. 2021/2022

ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-

3° Year   activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
activated in the A.Y. 2021/2022
ModulesCreditsTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
English language B1 level
6
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
6
C
SECS-P/05
Final exam
6
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°- 3°
Between the years: 1°- 2°- 3°
Other activities
6
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S00247

Academic staff

Davide Mattiolo

Coordinator

Credits

6

Language

Italian

Scientific Disciplinary Sector (SSD)

MAT/03 - GEOMETRY

Period

Primo semestre dal Oct 4, 2021 al Jan 28, 2022.

Learning outcomes

The course aims to provide students with the basic concepts of the general topology and the basics of differential geometry of curves and surfaces embedded in an Euclidean space.

At the end of the course, the student has a general and complete vision of topological properties in a wider context than that of real Euclidean spaces. He/She be able to recognize and compute the main geometrical characteristics of a curve and of a surface (Frenet frames, curvatures, fundamental quadratic forms ...). He/She also be able to produce rigorous arguments and proofs on these topics and he/she can read papers and advanced texts on Topology and Differential Geometry.

Program

The entire course will be available online. There will also be 12 hours of tutoring (also online) that will focus in particular on the resolution of topology exercises.

-General Topology.

Topological space, definition. Examples: trivial topology, discrete topology, discrete topology, cofinite topology. Comparison of topologies. Basis. Neighbourhoods. Closure. Contnuos applications. Homeomorphisms. Limit points and isolated points. Dense set. Topological subspace, induced topology. Product spaces.
Separation axioms. Hausdorff spaces, Normal spaces, Regular spaces.
Countability axioms. Quotient space. Open and closed applications.
Relevant examples: sphere, projective space, Moebius strip...
Compactness. Heine-Borel Theorem. Tychonoff Theorem. Bolzano-Weierstrass Theorem.
Connectivity, local connectivity. Path connectivity. Examples and counterexamples. Simply connected, homotopy and fundamental group. Jordan curve Theorem.

-Differential geometry of curves.

Curves in the plane:
Examples. Regular points and singular points. Embedding and immersion. Vector fields along a curve. Tangent vector and line. Length of an arc. Parametrization by arc-length. Inflection points. Curvature and radius of curvature. Center of curvature. Frenet-Serret formula.
Curves in the space:
Tangent line. Normal plane. Inflection points. Osculator plane. Curvatures. Principal frame. Frenet-Serret formula. Torsion. Fundamental Theorem.

-Differential geometry of surfaces.

Definitions. Differentiable atlas. Oriented atlas, Tangent plane, Normal versor.
First fundamental quadratic form: metric and area. Tangential curvature and normal curvature of a curve on a surface. Curvatures, normal sections, Meusnier Theorem. Principal curvatures, Gaussian curvature and mean curvature: Theorem Egregium. Geodetics.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

To pass the exam, students must show that:
- they know and understand the fundamental concepts of general topology
- they know and understand the fundamental concepts of local theory of curves and surfaces
- they have analysis and abstraction abilities
- they can apply this knowledge in order to solve problems and exercises and they can rigorously support their arguments.

Written test (150 minutes).
The exam consists of four exercises (2 on topology, 1 on curve theory and 1 on surfaces theory) and two questions (1 on general definition / concepts and 1 with a proof of a theorem presented during the lectures).

Oral Test (Optional)
It is a discussion with the lecturer on definitions and proofs discussed during the lessons.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE