Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

1° Year

ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05

2° Year  activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Final exam
24
E
-
ModulesCreditsTAFSSD
9
B
ING-INF/04
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
6
B/C
INF/01
6
B/C
ING-INF/05
Compulsory activities for Smart Systems & Data Analytics
6
B/C
INF/01 ,ING-INF/06
6
B/C
ING-INF/05
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
Compulsory activities for Embedded & Iot Systems
Compulsory activities for Robotics Systems
Compulsory activities for Smart Systems & Data Analytics
6
B/C
ING-INF/05
Final exam
24
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
3
F
-
Between the years: 1°- 2°
Training
3
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S009021

Credits

6

Language

English en

Scientific Disciplinary Sector (SSD)

ING-INF/01 - ELECTRONIC ENGINEERING

The teaching is organized as follows:

Teoria

Credits

4

Period

Primo semestre

Academic staff

Alessandro Romeo

Laboratorio

Credits

2

Period

Primo semestre

Academic staff

Francesco Enrichi

Learning outcomes

The course aims to educate students on advanced theoretical and technological aspects of integrated electronic devices and sensors of signals and data. The main objective of the course is therefore to provide the principles of physics of integrated devices, knowledge of the technology of optical, thermoelectric, magnetic and gas sensors, their interface with advanced software applications as well as the methods of use of the same in the environment robotic and manufacturing. Upon completion of the course, the student would demonstrate the acquisition of the fundamental knowledge of the technology, functioning and applications of integrated electronic devices and sensors. This knowledge will allow the student to: i) understand the behavior of integrated electronic devices; ii) select and apply sensors for the acquisition of signals and data in a robotic and manufacturing environment; iii) interface sensors to signal and data processing applications. After this course, the student will have acquired the ability to independently assess the advantages and disadvantages of different technological and design solutions in the field of integrated electronic devices and signal and data acquisition sensors. In addition, he will be able to: i) carry out a group laboratory project and present its results by motivating the choices made with language appropriateness: ii) autonomously continue the study and research in the field of integrated electronic devices and acquisition of signals and data, addressing advanced issues both in the industrial and scientific fields.

Program

In order to properly follow the lectures it is strongly recommended to have already acquired knowledge on classical physics (laws of motion, work, energy, electric field, electric potential).

The course consists of theoretical section and two different experimental sections in the lab (simulation and hardware).

Topics:

Elements of Classical Physics and Atomic Physics: work and energy, electric field and potential, electric current, Ohm's law, linear circuits resistivity and temperature dependence in metals and semiconductors, the Bohr model, the periodic table of the elements

Crystal structure and electrical properties of metals, semiconductors and doped semiconductors: gas model of electrons in metals as a link model in semiconductors, concept of gap, doped semiconductors, nods to the band theory, conduction current and dissemination

P-n junction: non-polarized and polarized junction, ddp contact, voltage-current characteristic in forward and reverse bias, junction diode, Zener diode, OR / AND gates to diodes, switching times

Bipolar junction transistor BJT, input curves and in common emitter configuration output, common base, inverter, transfer rates characteristic and noise margins, switching times

Transitor in the field of JFET and MOSFET effect, manufacturing techniques, output and transfer curves, MOSFET and CMOS inverters, transfer characteristics, noise margins, switching times

Elementary digital circuits in MOS technology, CMOS, bipolar, ECL: NOR and NAND MOSFET and CMOS, NAND DTL, HTL, TTL, OR / NOR ECL

Comparison of logic families: propagation delay, power dissipation, fan-out, noise margins

-Laboratory (software) with circuit simulation with Micro Cap (12 hours).
-Laboratory (hardware) with circuit fabrication on pre-prepared electronic cards (12 hours).

The complete teaching material is available on the e-learning portal.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Examination Methods

The final test will be an oral exams on the topics covered in the lectures.
Specifically a small report (thesis) on a specific topic developed in the course, for example a particular device and/or sensor. The student will present his work by an oral presentation (for example in power point) where questions on the basic physics principles of semiconductors and of electronic devices might arise.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE