Training and Research

PhD Programme Courses/classes - 2023/2024

Non monotonic reasoning

Credits: 3

Language: English

Teacher:  Matteo Cristani

Sustainable Embodied Mechanical Intelligence

Credits: 3

Language: English

Teacher:  Giovanni Gerardo Muscolo

Brain Computer Interfaces

Credits: 3

Language: English

Teacher:  Silvia Francesca Storti

A practical interdisciplinary PhD course on exploratory data analysis

Credits: 4

Language: English

Teacher:  Prof. Vincenzo Bonnici (Università di Parma)

Multimodal Learning and Applications

Credits: 5

Language: English

Teacher:  Cigdem Beyan

Introduction to Blockchain

Credits: 3

Language: English

Teacher:  Sara Migliorini

Cyber-physical systems security

Credits: 3

Language: English/Italian

Teacher:  Massimo Merro

Advanced Data Structures for Textual Data

Credits: 3

Language: English

Teacher:  Zsuzsanna Liptak

AI and explainable models

Credits: 5

Language: English

Teacher:  Gloria Menegaz, Lorenza Brusini

Automated Software Testing

Credits: 4

Language: English

Teacher:  Mariano Ceccato

Autonomous Agents and Multi-Agent Systems

Credits: 5

Language: English

Teacher:  Alessandro Farinelli

Elements of Machine Teaching: Theory and Appl.

Credits: 3

Language: English

Teacher:  Ferdinando Cicalese

Foundations of quantum languages

Credits: 3

Language: English

Teacher:  Margherita Zorzi

Introduction to Quantum Machine Learning

Credits: 4

Language: English

Teacher:  Alessandra Di Pierro

Laboratory of quantum information in classical wave-optics analogy

Credits: 3

Language: English

Teacher:  Claudia Daffara

Credits

5

Language

English

Class attendance

Free Choice

Location

VERONA

Learning objectives

Artificial Intelligence has become a fundamental instrument in fields like biomedicine and neurosciences, from the discovery of new numerical biomarkers to support to the diagnosis. However, especially in the previously mentioned fields, the machine and deep learning methods employed for the analysis are often seen as black box due to the million of mathematical operations they perform. Explainable models have been developed with the precise scope of shedding light on the mechanisms leading to the results. Based on this premise, this course aims at providing the students knowledge about the main machine learning methods and explainable models at the state of the art that are mostly exploited in the field, providing both theoretical bases and implementation tools.

Prerequisites and basic notions

The laboratory sessions will be in Python as this is by far the most exploited tool for Artificial Intelligence applications in any field. To promote the participation of students from other fields beyond computer science (e.g., biomedical field), the first lesson can be devoted to the introduction of the main concepts so to provide also those with no background the tools needed for attending the hands-on sessions.

Program

- Fundamentals of AI: machine learning step-by-step
- Opening the black box: the eXplainable Artificial Intelligence
- The main models in the light of explainability
- A hint into agnostic post-hoc explainability models

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

The participation to the course will be fully in person. Each lecture will start by setting the theoretical bases of the following hands-on session. In particular, the hands-on sessions will include both the illustration and discussion of pieces of code and the exercises for students aiming at solving the considered problem.
- Friday, 14th of June 2024. From 9:00 to 13:00 in Aula T.06 (Cà Vignal 3)
- Thursday, 20th of June 2024. From 9:00 to 13:00 in Aula T.05 (Cà Vignal 3)
- Friday, 21st of June 2024. From 9:00 to 13:00 in Aula T.05 (Cà Vignal 3)
- Tuesday, 25th of June 2024. From 9:00 to 13:00 in Aula B (Cà Vignal 1)
- Thursday, 27th of June 2024. From 9:00 to 13:00 in Aula T.05 (Cà Vignal 3)

Learning assessment procedures

Development of a brief project consisting of the application of what learned during the lessons.

Students with disabilities or specific learning disorders (SLD), who intend to request the adaptation of the exam, must follow the instructions given HERE

Assessment

Correct application of what learned during the course

Criteria for the composition of the final grade

Pass/Fail

PhD school courses/classes - 2023/2024

Please note: Additional information will be added during the year. Currently missing information is labelled as “TBD” (i.e. To Be Determined).

PhD students must obtain a specified number of CFUs each year by attending teaching activities offered by the PhD School.
First and second year students must obtain 8 CFUs. Teaching activities ex DM 226/2021 provide 5 CFUs; free choice activities provide 3 CFUs.
Third year students must obtain 4 CFUs. Teaching activities ex DM 226/2021 provide 2 CFUs; free choice activities provide 2 CFUs.

Registering for the courses is not required unless explicitly indicated; please consult the course information to verify whether registration is required or not. When registration is actually required, no confirmation e-mail will be sent after signing up.

Teaching Activities ex DM 226/2021: Linguistic Activities

Teaching Activities ex DM 226/2021: Research management and Enhancement

Teaching Activities ex DM 226/2021: Statistics and Computer Sciences

Teaching Activities: Free choice

Faculty

B C D F G L M O P Q R S V Z

Belussi Alberto

symbol email alberto.belussi@univr.it symbol phone-number +39 045 802 7980

Beyan Cigdem

symbol email cigdem.beyan@univr.it

Bicego Manuele

symbol email manuele.bicego@univr.it symbol phone-number +39 045 802 7072

Bonacina Maria Paola

symbol email mariapaola.bonacina@univr.it symbol phone-number +39 045 802 7046

Brusini Lorenza

symbol email lorenza.brusini@univr.it symbol phone-number +39 045 802 7874

Carra Damiano

symbol email damiano.carra@univr.it symbol phone-number +39 045 802 7059

Castellani Umberto

symbol email umberto.castellani@univr.it symbol phone-number +39 045 802 7988

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Ceccato Mariano

symbol email mariano.ceccato@univr.it

Cicalese Ferdinando

symbol email ferdinando.cicalese@univr.it symbol phone-number +39 045 802 7969

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +390458027985

Cristani Matteo

symbol email matteo.cristani@univr.it symbol phone-number 045 802 7983

Daducci Alessandro

symbol email alessandro.daducci@univr.it symbol phone-number +39 045 8027025

Daffara Claudia

symbol email claudia.daffara@univr.it symbol phone-number +39 045 802 7942

Dalla Preda Mila

symbol email mila.dallapreda@univr.it

Di Pierro Alessandra

symbol email alessandra.dipierro@univr.it symbol phone-number +39 045 802 7971

Farinelli Alessandro

symbol email alessandro.farinelli@univr.it symbol phone-number +39 045 802 7842

Giugno Rosalba

symbol email rosalba.giugno@univr.it symbol phone-number 0458027066

Liptak Zsuzsanna

symbol email zsuzsanna.liptak@univr.it symbol phone-number +39 045 802 7032

Lissandrini Matteo

symbol email matteo.lissandrini@univr.it symbol phone-number +39 045802 8853

Mastroeni Isabella

symbol email isabella.mastroeni@univr.it symbol phone-number +390458027089

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Merro Massimo

symbol email massimo.merro@univr.it symbol phone-number 045 802 7992

Migliorini Sara

symbol email sara.migliorini@univr.it symbol phone-number +39 045 802 7908

Muscolo Giovanni Gerardo

symbol email giovannigerardo.muscolo@univr.it

Oliboni Barbara

symbol email barbara.oliboni@univr.it symbol phone-number +39 045 802 7077

Paci Federica Maria Francesca

symbol email federicamariafrancesca.paci@univr.it symbol phone-number +39 045 802 7909

Posenato Roberto

symbol email roberto.posenato@univr.it symbol phone-number +39 045 802 7967

Quaglia Davide

symbol email davide.quaglia@univr.it symbol phone-number +39 045 802 7811

Quintarelli Elisa

symbol email elisa.quintarelli@univr.it symbol phone-number +390458027852

Rospocher Marco

symbol email marco.rospocher@univr.it symbol phone-number +39 045802 8326

Sala Pietro

symbol email pietro.sala@univr.it symbol phone-number 0458027850

Spoto Nicola Fausto

symbol email fausto.spoto@univr.it symbol phone-number +39 045 8027940

Storti Silvia Francesca

symbol email silviafrancesca.storti@univr.it symbol phone-number +39 045 802 7850

Villa Tiziano

symbol email tiziano.villa@univr.it symbol phone-number +39 045 802 7034

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7045

PhD students

PhD students present in the:

No people are present. 40° Ciclo not started.

Course lessons
PhD Schools lessons

Loading...

Guidelines for PhD students

Below you will find the files that contain the Guidelines for PhD students and rules for the acquisition of ECTS credits (in Italian: "CFU") for the Academic Year 2023/2024.

Documents

Title Info File
File pdf Dottorandi: linee guida generali (2023/2024) pdf, it, 93 KB, 26/02/24
File pdf PhD students: general guidelines (2023/2024) pdf, en, 94 KB, 26/02/24