Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea in Matematica applicata - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
2° Anno Attivato nell'A.A. 2024/2025
Insegnamenti | Crediti | TAF | SSD |
---|
3° Anno Sarà attivato nell'A.A. 2025/2026
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Geometria (2024/2025)
Codice insegnamento
4S00247
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Italiano
Settore Scientifico Disciplinare (SSD)
MAT/03 - GEOMETRIA
Periodo
I semestre dal 1 ott 2024 al 31 gen 2025.
Corsi Singoli
Autorizzato
Obiettivi di apprendimento
L'insegnamento si propone di fornire allo studente i concetti fondamentali della topologia generale e le basi della geometria differenziale delle curve e delle superfici immerse in uno spazio euclideo. Al termine dell'insegnamento lo studente conoscerà le principali proprietà degli spazi topologici. Inoltre sarà in grado di riconoscere e calcolare le caratteristiche geometriche principali di curve e superfici immerse (triedo di riferimento, curvature, forme quadratiche fondamentali...). Sarà inoltre in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di Topologia e Geometria Differenziale.
Prerequisiti e nozioni di base
Algebra lineare, geometria affine e proiettiva. Calcolo differenziale in una e più variabili.
Programma
Topologia Generale
Geometria differenziale delle curve nel piano e nello spazio
Geometria differenziale delle superfici nello spazio
Bibliografia
Modalità didattiche
Lezioni frontali e sessioni di esercitazione.
Modalità di verifica dell'apprendimento
Prova scritta obbligatoria (150min)
Prova orale su richiesta del docente
Criteri di valutazione
Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della topologia generale
- conoscere e aver compreso i concetti fondamentali della teoria locale delle curve e delle superfici
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.
Criteri di composizione del voto finale
Prova scritta voto massimo 30/30 con Lode
Lingua dell'esame
Italiano