Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea in Matematica applicata - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

2° Anno   Attivato nell'A.A. 2024/2025

InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-

3° Anno   Sarà attivato nell'A.A. 2025/2026

InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Attivato nell'A.A. 2024/2025
InsegnamentiCreditiTAFSSD
6
A
MAT/02
6
B
MAT/03
6
C
SECS-P/01
6
C
SECS-P/01
Lingua inglese liv. B2
6
E
-
Sarà attivato nell'A.A. 2025/2026
InsegnamentiCreditiTAFSSD
6
C
SECS-P/05
Prova finale
6
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°- 3°
Altre attività formative
6
F
-
Tra gli anni: 1°- 2°- 3°

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S00247

Coordinatore

Alessia Mandini

Crediti

6

Lingua di erogazione

Italiano

Settore Scientifico Disciplinare (SSD)

MAT/03 - GEOMETRIA

Periodo

I semestre dal 1 ott 2024 al 31 gen 2025.

Corsi Singoli

Autorizzato

Obiettivi di apprendimento

L'insegnamento si propone di fornire allo studente i concetti fondamentali della topologia generale e le basi della geometria differenziale delle curve e delle superfici immerse in uno spazio euclideo. Al termine dell'insegnamento lo studente conoscerà le principali proprietà degli spazi topologici. Inoltre sarà in grado di riconoscere e calcolare le caratteristiche geometriche principali di curve e superfici immerse (triedo di riferimento, curvature, forme quadratiche fondamentali...). Sarà inoltre in grado di produrre argomentazioni e dimostrazioni rigorose su questi temi e sarà in grado di leggere articoli e testi di Topologia e Geometria Differenziale.

Prerequisiti e nozioni di base

Algebra lineare, geometria affine e proiettiva. Calcolo differenziale in una e più variabili.

Programma

Topologia Generale
Geometria differenziale delle curve nel piano e nello spazio
Geometria differenziale delle superfici nello spazio

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità didattiche

Lezioni frontali e sessioni di esercitazione.

Modalità di verifica dell'apprendimento

Prova scritta obbligatoria (150min)
Prova orale su richiesta del docente

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Criteri di valutazione

Per superare l'esame gli studenti devono dimostrare di:
- conoscere e aver compreso i concetti fondamentali della topologia generale
- conoscere e aver compreso i concetti fondamentali della teoria locale delle curve e delle superfici
- avere un'adeguata capacità di analisi e sintesi e di astrazione
- sapere applicare queste conoscenze per risolvere problemi ed esercizi, sapendo argomentare i loro ragionamenti con rigore matematico.

Criteri di composizione del voto finale

Prova scritta voto massimo 30/30 con Lode

Lingua dell'esame

Italiano