The programme

A.A. 2021/2022

Servizi di orientamento

The new site of the Study Orientation Office, with new form and content, is the result of a long project aiming to give a better and more complete service to its many users. Users are mostly secondary schools pupils approaching the university world for the first time and schools' University Orientation Services who organize activities to assist their pupils in post-school choices. "Making a decision means choosing the best alternative to satisfy one's expectations, preferences and aspirations".

More details: www.univr.it/orientamento (italian page)

VAI ALLA PAGINA

l laureato dovrà:

- conoscere adeguatamente gli aspetti metodologico-operativi della matematica, della fisica e della chimica conoscere adeguatamente gli aspetti metodologico-operativi dell’elettronica, della meccanica e dell’informatica con particolare attenzione ai problemi dell'ingegneria biomedica;
- conoscere adeguatamente gli aspetti metodologico-operativi di carattere medico-biologico;
- comprendere l'impatto delle soluzioni biomedicali nel contesto sociale e fisico-ambientale;
- conoscere le proprie responsabilità̀ professionali ed etiche;
- conoscere gli strumenti cognitivi di base per l'aggiornamento continuo delle proprie conoscenze.

Grazie a tali conoscenze il laureato in Ingegneria dei Sistemi Medicali per la Persona saprà:

utilizzare le metodologie di indagine e gli strumenti matematici, chimico-fisici, meccanici ed elettronici al fine di comprendere, analizzare o modellare sistemi biofisici e biomedici;

- analizzare e risolvere problemi ingegneristici di natura meccanica, elettronica o informatica legati allo sviluppo o alla gestione di dispositivi, sistemi o servizi biomedicali;
- utilizzare le tecnologie informatiche di base, inerenti le architetture, le reti e la programmazione, nell’ambito dello sviluppo o della gestione di dispositivi, sistemi o servizi biomedicali o di sanità elettronica;
- utilizzare le tecnologie meccatroniche nell’ambito dello sviluppo o della gestione di dispositivi, sistemi o servizi biomedicali;
- essere capace di condurre esperimenti di carattere biofisico e di analizzarne e interpretarne i dati;
- lavorare in gruppo, operare con definiti gradi di autonomia, e inserirsi prontamente negli ambienti di lavoro;
- comunicare efficacemente, in forma scritta e orale, in almeno una lingua dell'Unione Europea, oltre l'italiano;

Al fine di fornire il complesso di tali conoscenze e competenze, il piano di studi è stato organizzato come descritto in seguito. I primi due anni sono volti ad acquisire conoscenze di base che coinvolgono quattro aree: matematica-fisica-chimica, medico-biologica ed etica, informatica e applicativa, e ingegneristica. Questa preparazione di base punta in particolare a fornire solide conoscenze per consentire al laureato, fra gli sbocchi possibili, anche il proseguimento degli studi verso una laurea magistrale. Infatti, l’analisi occupazionale rivela che circa il 70% dei laureati in Ingegneria Biomedica tende a proseguire il percorso di studi iscrivendosi a una laurea magistrale.
Parte del secondo e il terzo anno sono dedicati a una formazione più specifica che differenzia il piano in due curricula, che catturano quanto emerso dalla consultazione con le parti interessate.
Tra le tecnologie previste nel piano di studi, possiamo riconoscere un sottogruppo 'hardware' e un sottogruppo 'software'. Si è pertanto proceduto a definire due curricula che avessero una preparazione specializzata su questi due versanti. I due curricula condividono molti insegnamenti di base e si differenziano principalmente nel terzo anno di corso. Per quanto riguarda il curriculum A esso pone enfasi sulle competenze tipiche dell’ingegneria industriale, quali la meccanica e l’elettronica e fornisce contenuti specializzanti negli ambiti dei sistemi di controllo e della robotica. Per quanto riguarda il curriculum B, esso inserisce basi di informatica, e più in generale di ingegneria dell’informazione, con declinazioni professionalizzanti nell’ambito della telemedicina, dell’elaborazione delle immagini e dei sistemi di misura. Le basi di ingegneria industriale e dell’informazione sono comuni a entrambi i curricula permettendo così l’accesso alle tre figure professionali identificate. Insegnamenti dell’area medico-biologico ed insegnamenti a scelta nell’ambito informatico, industriale e gestionale completano la formazione dei curricula con contenuti specialistico-applicativi.
Il terzo anno di corso è caratterizzato anche da un insegnamento obbligatorio di psicologia e etica, per sensibilizzare gli studenti alle problematiche dell’interazione tra macchine dotate di livelli diversi di autonomia e intelligenza e gli utenti, di solito in una situazione di particolare fragilità. Il terzo anno include infine un progetto industriale, che verrà svolto in collaborazione con i partner, industriali e sanitari, del corso di laurea e può includere un periodo di tirocinio. Questo progetto permetterà agli studenti di avvicinarsi alle problematiche lavorative e, potenzialmente, getterà le basi dell’elaborato finale che concluderà il percorso di studio.

PROFILI PROFESSIONALI

SVILUPPATORE DI DISPOSITIVI E TECNOLOGIE BIOMEDICALI

A) Funzione in un contesto di lavoro: Lo sviluppatore di dispositivi e tecnologie biomedicali può svolgere funzioni relative principalmente a sviluppo, gestione e manutenzione di sistemi e servizi biomedici con particolare riguardo ai dispositivi biomedicali per diagnosi e terapia, ai dispositivi portatili, indossabili o impiantabili come ad esempio smart watch, event recorder, pacemakers o pancreas artificiali, ai sistemi robotici per la chirurgia, per la riabilitazione o per l’assistenza, ai sistemi per l’allenamento e per la medicina sportiva, e ai sistemi di trasporto della persona.
B) Competenze associate alla funzione: Lo sviluppatore di dispositivi e tecnologie biomedicali saprà: - utilizzare le metodologie di indagine e gli strumenti matematici, fisici, meccanici ed elettronici al fine di comprendere, analizzare o modellare sistemi biofisici e biomedici; - analizzare e risolvere problemi ingegneristici di natura meccanica, elettronica o informatica legati allo sviluppo di dispositivi e sistemi biomedicali; - utilizzare le tecnologie e le conoscenze informatiche di base, inerenti le architetture, le reti e la programmazione, nell’ambito dello sviluppo di dispositivi e sistemi biomedicali anche remoti o interconnessi; - utilizzare le tecnologie meccatroniche per lo sviluppo di dispositivi e sistemi biomedicali per il trattamento di patologie o condizioni motorie, o più in generale per assistere medico e paziente; - lavorare in gruppo, operare con definiti gradi di autonomia, e inserirsi prontamente negli ambienti di lavoro.
C) Sbocchi occupazionali: Lo sviluppatore di dispositivi e tecnologie biomedicali è in grado di svolgere compiti tecnici o professionali nell'ambito delle tecnologie meccaniche, elettroniche e biomediche presso enti pubblici o privati. In particolare, la formazione ingegneristica, fondata su basi di matematica, fisica, meccanica, elettronica e informatica permette al laureato di inserirsi agevolmente sia in imprese che progettano e sviluppano sistemi biomedicali, che in aziende ed enti sanitari, e, più in generale, organizzazioni che utilizzano tali sistemi, riuscendo, in tempi brevi, ad acquisire eventuali competenze specifiche richieste.

SVILUPPATORE DI SERVIZI SANITARI DI ASSISTENZA E CURA DELLA PERSONA

A) Funzione in un contesto di lavoro: Lo Sviluppatore di servizi sanitari di assistenza e cura della persona può svolgere funzioni relative principalmente a sviluppo, gestione e manutenzione di servizi sanitari di assistenza e cura della persona come ad esempio servizi diagnostici, servizi di telemedicina, telemonitoraggio e teleassistenza, servizi inerenti la riabilitazione e la medicina sportiva, mediante l’utilizzo di strumentazioni hardware e software, l’impiego di tecnologie inerenti ad esempio i dispositivi indossabili, i sistemi distribuiti e la strumentazione biomedicale per diagnosi e trattamenti personalizzati.
B) Competenze associate alla funzione: Lo Sviluppatore di servizi sanitari di assistenza e cura della persona saprà: - utilizzare le metodologie di indagine e gli strumenti matematici, fisici, meccanici ed elettronici al fine di comprendere o analizzare sistemi sanitari per la cura e l’assistenza della persona; - analizzare problemi ingegneristici di natura meccanica, elettronica o informatica legati alla gestione di servizi sanitari; - utilizzare le tecnologie e le conoscenze informatiche di base, inerenti le architetture e le reti nell’ambito della gestione di servizi sanitari, anche interconnessi; - integrare nei sistemi sanitari strumenti meccatronici per il trattamento di patologie o condizioni motorie; - lavorare in gruppo, operare con definiti gradi di autonomia, e inserirsi prontamente negli ambienti di lavoro.
C) Sbocchi occupazionali: Lo Sviluppatore di servizi sanitari di assistenza e cura della persona è in grado di svolgere compiti tecnici o professionali nell'ambito delle tecnologie informatiche e biomediche presso enti pubblici o privati. In particolare, la formazione ingegneristica, fondata su basi di matematica, fisica, elettronica ed informatica permette al laureato di inserirsi agevolmente sia in imprese che forniscono servizi di tipo biomedicali, che in aziende ed enti sanitari, e, più in generale, organizzazioni che utilizzano sistemi o servizi biomedicali, riuscendo, in tempi brevi, ad acquisire eventuali competenze specifiche richieste.

GESTORE DI STRUMENTAZIONI SANITARIE E DI SERVIZI ICT PER LA SANITA'

A) Funzione in un contesto di lavoro: Il gestore di strumentazioni sanitarie e di servizi ICT per la sanità può svolgere funzioni legate principalmente a utilizzo, gestione e manutenzione di sistemi e strumentazioni biomedicali e di applicazioni relative alla sanità elettronica
B) Competenze associate alla funzione: Il gestore di strumentazioni sanitarie e di servizi ICT per la sanità saprà: - utilizzare le metodologie di indagine e gli strumenti matematici, fisici, meccanici ed elettronici al fine di gestire strumentazioni sanitarie e servizi ICT per la sanità; - utilizzare le tecnologie informatiche di base, inerenti le architetture e le reti, nell’ambito della gestione di sistemi e dispositivi biomedicali, dell’amministrazione di sistemi informatici di sanità elettronica e di sistemi di reti di calcolatori; - analizzare problemi ingegneristici di natura meccanica, elettronica o informatica legati alla gestione di strumentazioni sanitarie e servizi ICT per la sanità; - lavorare in gruppo, operare con definiti gradi di autonomia, e inserirsi prontamente negli ambienti di lavoro.
C) Sbocchi occupazionali: Il Gestore di strumentazioni sanitarie e di servizi ICT per la sanità è in grado di svolgere compiti tecnici o professionali nell'ambito dei sistemi ICT per la sanità presso enti pubblici o privati. In particolare, la formazione ingegneristica, fondata su basi di matematica, fisica, elettronica ed informatica permette al laureato di inserirsi agevolmente sia in imprese che progettano e sviluppano servizi ICT per la sanità, che in aziende ed enti, e, più in generale, organizzazioni che utilizzano tali servizi, riuscendo, in tempi brevi, ad acquisire eventuali competenze specifiche richieste.



Quality Assurance

The quality of a degree programme is the extent to which it achieves its educational objectives and meets the quality requirements of the educational activities offered, which are determined in line with the needs and expectations of students and representatives of the world of work.

This programme has adopted a teaching Quality Assurance system in line with the University’s quality assurance guidelines and based on the e ANVUR national quality assurance guidelines, by carrying out the following activities:
  • periodic consultations with representatives of the world of work to assess the adequacy of the cultural and professional profiles offered in their courses;
  • design of educational contents and planning of resources;
  • organisation of educational activities and teaching services;
  • monitoring the effectiveness of teaching and planning measures to improve teaching and services;
  • provision of complete and up-to-date information on its website, relating to the programme (professional roles, expected learning outcomes, learning activities).
The above activities are scheduled and interrelated, based on the PDCA principles (Plan, Do, Check, Act).
schema_qualita

In a Quality Assurance system, students play a fundamental role: each student can play their part by participating in the Quality Assurance groups of their degree programme and in the Faculty-Student Joint Committees or, more simply, by taking part in the Student Survey on teaching, or questionnaires. It’s in this context that specific workshops for student representatives (‘Laboratori di rappresentanza attiva’) are periodically made available to students by the University and the University’s Quality Assurance Board. To find out more, please see the relevant section.

Il sistema di valutazione universitario e il ruolo dello studente

by Prof. Graziano Pravadelli: a lecture recorded on the occasion of the January 2021 workshop for student representatives.

QA bodies

QA in degree programmes

QA activities

Description of the training course - Didactic regulations

Not yet available

The Degree programme teaching regulations set out the organisational aspects of the degree programme, in line with the University’s teaching regulations. The first part of the document includes general information about the programme, the second part includes links to the relevant module web pages, and the third part specifies the administrative aspects.

Other Regulations

To view other regulations of interest refer to the section: Statute and regulations

Il sistema universitario italiano

schema_qualita

Primo ciclo: Corsi di Laurea

Essi hanno l’obiettivo di assicurare agli studentesse e studenti un’adeguata padronanza di metodi e contenuti scientifici generali e l’acquisizione di specifiche conoscenze professionali.
Requisito minimo per l’accesso: diploma finale di scuola secondaria, rilasciato al completamento di 13 anni di scolarità complessiva e dopo il superamento del relativo esame di Stato, o un titolo estero comparabile; l’ammissione può essere subordinata alla verifica di ulteriori condizioni.
Durata: triennale.
Titolo: per conseguire il titolo di Laurea, è necessario aver acquisito 180 Crediti Formativi Universitari (CFU), equivalenti ai crediti ECTS; può essere richiesto un periodo di tirocinio e la discussione di una tesi o la preparazione di un elaborato finale.
Il titolo di Laurea dà accesso alla Laurea Magistrale e agli altri corsi di 2° ciclo.
Qualifica accademica: “Dottore”

Secondo ciclo: Corsi di Laurea Magistrale

Essi offrono una formazione di livello avanzato per l’esercizio di attività di elevata qualificazione in ambiti specifici.
Requisiti per l’accesso: l’accesso ai corsi è subordinato al possesso di una Laurea o di un titolo estero comparabile; l'ammissione è soggetta a requisiti specifici decisi dalle singole università.
Durata: biennale.
Titolo: per conseguire il titolo di Laurea Magistrale, è necessario aver acquisito 120 crediti (CFU) e aver elaborato e discusso una tesi di ricerca.
Qualifica accademica: “Dottore magistrale”
Corsi di Laurea Magistrale a ciclo unico
Alcuni corsi (Medicina e chirurgia, Medicina veterinaria, Odontoiatria e protesi dentaria, Farmacia e Farmacia industriale, Architettura e Ingegneria edile-Architettura, Giurisprudenza, Scienze della formazione primaria) sono definiti “Corsi di Laurea Magistrale a ciclo unico”. Requisito di accesso: diploma di scuola secondaria superiore o un titolo estero comparabile; l’ammissione è subordinata a una prova di selezione.
Durata: gli studi si articolano su 5 anni (6 anni e 360 CFU per Medicina e Chirurgia e per Odontoiatria e protesi dentaria).
Titolo: per conseguire il titolo di Laurea Magistrale, è necessario aver acquisito 300 CFU ed aver elaborato e discusso una tesi di ricerca.
Il titolo di Laurea Magistrale dà accesso al Dottorato di Ricerca e agli altri corsi di 3° ciclo.
Qualifica accademica: “Dottore magistrale”.

Terzo ciclo

Dottorato di Ricerca: essi hanno l’obiettivo di far acquisire una corretta metodologia per la ricerca scientifica avanzata, adottano metodologie innovative e nuove tecnologie, prevedono stage all’estero e la frequenza di laboratori di ricerca. L’ammissione richiede una Laurea Magistrale (o un titolo estero comparabile) e il superamento di un concorso; la durata è di minimo 3 anni. Il/la dottorando/a deve elaborare una tesi originale di ricerca e discuterla durante l’esame finale.
Qualifica accademica: “Dottore di ricerca” o “PhD”.
Corsi di Specializzazione: corsi di 3° ciclo aventi l’obiettivo di fornire conoscenze e abilità per l’esercizio di attività professionali di alta qualificazione, particolarmente nel settore delle specialità mediche, cliniche e chirurgiche. Per l’ammissione è richiesta una Laurea Magistrale (o un titolo estero comparabile) e il superamento di un concorso; la durata degli studi varia da 2 (120 CFU) a 6 anni (360 CFU) in rapporto al settore disciplinare. Il titolo finale rilasciato è il Diploma di Specializzazione.

Master

Corsi di Master universitario di primo livello: corsi di 2° ciclo di perfezionamento scientifico o di alta formazione permanente e ricorrente. Vi si accede con una Laurea o con un titolo estero comparabile. La durata minima è annuale (60 CFU); non consente l’accesso a corsi di Dottorato di Ricerca e di 3°ciclo, perché il corso non ha ordinamento didattico nazionale e il titolo è rilasciato sotto la responsabilità autonoma della singola università. Il titolo finale è il Master universitario di primo livello.
Corsi di Master Universitario di secondo livello:corsi di 3° ciclo di perfezionamento scientifico o di alta formazione permanente e ricorrente. Vi si accede con una Laurea Magistrale o con un titolo estero comparabile. La durata è minimo annuale (60 CFU); non consente l’accesso a corsi di Dottorato di Ricerca e di 3° ciclo, perché il corso non ha ordinamento didattico nazionale e il titolo è rilasciato sotto la responsabilità autonoma della singola università. Il titolo finale è il Master universitario di secondo livello.

Altro da sapere sul Sistema universitario italiano

Crediti Formativi Universitari (CFU): i corsi di studio sono strutturati in crediti. Al Credito Formativo Universitario (CFU) corrispondono normalmente 25 ore di lavoro. La quantità media di lavoro accademico svolto in un anno da un/a iscritto/a a tempo pieno è convenzionalmente fissata in 60 CFU. I crediti formativi universitari sono equivalenti ai crediti ECTS.
Classi dei corsi di studio: i corsi di studio di Laurea e di Laurea Magistrale che condividono obiettivi e attività formative sono raggruppati in “classi”. I contenuti formativi di ciascun corso di studio sono fissati autonomamente dalle singole università; tuttavia le università devono obbligatoriamente inserire alcune attività formative (ed il corrispondente numero di crediti) determinate a livello nazionale. Tali requisiti sono stabiliti in relazione a ciascuna classe. I titoli di una stessa classe hanno lo stesso valore legale.
Titoli congiunti: le università italiane possono istituire corsi di studio in cooperazione con altre università, italiane ed estere, al termine dei quali sono rilasciati titoli congiunti o titoli doppi/multipli.

Why Verona