Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
The educational activities of type D are chosen by the student, those of type F are further knowledge useful for entering the world of work (internships, soft skills, project works, etc.). According to the Didactic Regulations of the Course, some activities can be chosen and included autonomously in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F educational activities can be covered by the following activities.
1. Teachings taught at the University of Verona.
Include the teachings listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can include it autonomously during the period in which the study plan is open; otherwise, the student must submit a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.
2. CLA certificate or language equivalency.
In addition to those required by the curriculum, the following are recognized:
- English language: 3 CFUs are recognized for each level of proficiency above the one required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 cfu are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These cfu will be recognized, up to a maximum of 6 cfu in total, as type F if the teaching plan allows, or as type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.
Booklet entry mode: request the certificate or equivalency to the CLA and send it to the Student Secretariat - Careers for career entry of the exam, via email: carriere.scienze@ateneo.univr.it
3. Soft skills
Discover the training paths promoted by the University's TALC - Teaching and learning center, intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali
Booklet entry mode: the teaching is not expected to be included in the curriculum. Only after obtaining the Open Badge, the CFUs in the booklet will be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. Contamination lab
The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.
Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).
Find out more: https://www.univr.it/clabverona
PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.
5. Stage/internship period
In addition to the CFUs required by the curriculum (check carefully what is indicated on the Didactic Regulations) here you can find information on how to activate the internship.
Check in the regulations which activities can be Type D and which can be Type F.
Please also note that for traineeships activated after 1 October 2024, it will be possible to recognise excess hours in terms of type D credits, limited only to traineeship experiences carried out at host organisations outside the University.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
1° 2° | BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER | D |
Franco Fummi
(Coordinator)
|
1° 2° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
Dynamic Systems (2024/2025)
Teaching code
4S009000
Teacher
Coordinator
Credits
6
Language
English
Scientific Disciplinary Sector (SSD)
ING-INF/04 - SYSTEMS AND CONTROL ENGINEERING
Period
Semester 1 dal Oct 1, 2024 al Jan 31, 2025.
Courses Single
Authorized
Learning objectives
The course aims to provide knowledge on the theoretical basis of the theory of dynamic systems, in the representation of state, with particular reference to the properties of time invariant linear systems and the methods for the synthesis of controllers for these systems. At the end of the course the student will have to demonstrate ability to apply the acquired knowledge: to provide the knowledge to analyze the structural properties of a linear dynamic system (e.g. reachability and observability) and its stability. Calculate the observability and reachability matrices; design a state feedback controller; design an asymptotic state observer; apply Lyapunov's theory of stability. The student must have the ability to define the technical specifications to design a controller for linear dynamic systems described by differential or difference equations. S/He will have to be able to deal with other engineers (e.g. electronic, automatic, mechanical) to design advanced controllers for complex electromechanical systems. It will have to show ability to continue studies independently in the field of designing robust and optimal controllers for linear and non-linear systems.
Prerequisites and basic notions
Linear algebra, Calculus, Signals and Systems
Program
State models:
- AR, MA, ARMA models,
- input-state-output representation,
- definitions of state, causality, algebraic equivalence,
- state and output update map,
- exponential matrix and its properties,
- Jordan canonical form, characteristic polynomial, algebraic and geometric multiplicity,
- modes, their characteristics, simple/asymptotic/BIBO stability,
- Relation between state representation and Laplace and Z transforms,
- Transfer functions, eigenvalues and poles.
Stability in state models:
- equilibrium state,
- stability of an equilibrium state,
- Lyapunov stability criterion,
- Lyapunov equation,
- linearization and reduced Lyapunov criterion.
Reachability:
- main concepts and the reachability Gramian,
- state space control,
- standard form of reachability, canonical control form,
- PBH criterion of reachability,
- state feedback.
Observability:
- main concepts and observability Gramian,
- State estimation (open and closed loop),
- standard form of observability, canonical observation form,
- PBH criterion of observability.
- Duality
Didactic methods
The course will consist of lectures in the classroom, along with shared slides, notes and possible additional material that could be useful to deepen the topics, and practical exercises in the classroom
Learning assessment procedures
The exam will consist of a written test on the course topics. The exam will contain questions in the form of theoretical questions and exercises where it will be required to apply specific theoretical knowledge. Each question will contribute to the total score according to an additive metric that will be specified before the exam. Both the theoretical part and the exercise part must be sufficient.
If the written test is evaluated positively (>18), an optional oral test is foreseen. The overall score will be the mean of the oral and written tests scores.
Evaluation criteria
At the end of the course, the student must demonstrate that:
1. have fully understood the main issues inherent to the course, both in a continuous and discrete context.
2. have a critical view of the issues addressed during the course and the results obtained from the application of specific methods;
3. knowing how to apply the knowledge acquired to solve in an appropriate way certain engineering problems of varying degrees of complexity;
Both parts (written and oral optional) will be carefully evaluated, thus giving equal importance to the correctness and effectiveness of the solutions adopted in solving concrete problems, as well as to the understanding of theoretical concepts.
Criteria for the composition of the final grade
The final grade will be the average of the written grade and of the optional oral exam.
Exam language
Inglese / English