Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Tipologia di Attività formativa D e F
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Contamination lab
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
PROCEDURA PER IL RICONOSCIMENTO DELL'ATTIVITA' LAVORATIVA COME CREDITI DI STAGE
Come previsto da delibera del collegio didattico di Matematica e Data Science n°8 -23/24, lo studente che intende farsi riconoscere ore di attività lavorativa come crediti di stage, prima dell'inizio dell'attività, è tenuto ad inviare all'indirizzo mail della segreteria studenti e in copia conoscenza alla commissione pratiche studenti (paolo.daipra@univr.it, luca.dipersio@univr.it, barbara.gaudenzi@univr.it) esplicita richiesta. Nella richiesta va specificato il tipo di attività, nome dell’azienda e sede lavorativa e ore/crediti di cui si sta chiedendo il riconoscimento.
Affinché l'attività sia riconoscibile è d'obbligo che si sia svolta durante gli anni di iscrizione al corso di studi. Una volta accertata la coerenza tra l'attività lavorativa in essere e gli obiettivi del corso, lo studente riceverà tempestiva comunicazione dalla commissione pratiche studenti con in copia conoscenza la segreteria.
Al termine del periodo lavorativo stabilito, lo studente invia alla segreteria studenti la seguente documentazione:
- relazione finale dettagliata che viene inoltrata alla commissione per l’approvazione finale (firmata dallo studente e da un referente aziendale);
- una dichiarazione del legale rappresentante dell'azienda/ente e/o documentazione atta a dimostrare la tipologia di attività professionale e l'impegno orario ad essa dedicato.
La segreteria studenti provvederà all'invio della documentazione ricevuta alla commissione pratiche studenti e alla registrazione dei CFU (taf F ed eventuali ulteriori crediti taf D) deliberati dalla commissione stessa.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto valide per l'a.a. 2024/25
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Elementi di Cosmologia e Relatività generale | D |
Claudia Daffara
(Coordinatore)
|
1° 2° | Introduzione alla meccanica quantistica per il quantum computing | D |
Claudia Daffara
(Coordinatore)
|
1° 2° | Linguaggio programmazione Python [English edition] | D |
Carlo Combi
(Coordinatore)
|
1° 2° | Progettazione di app REACT | D |
Graziano Pravadelli
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Linguaggio programmazione Python [Edizione in italiano] | D |
Carlo Combi
(Coordinatore)
|
1° 2° | Sfide di programmazione | D |
Romeo Rizzi
(Coordinatore)
|
1° 2° | Tutela dei beni immateriali (SW e invenzione) tra diritto industriale e diritto d’autore | D |
Mila Dalla Preda
(Coordinatore)
|
anni | Insegnamenti | TAF | Docente |
---|---|---|---|
1° 2° | Mathematics mini courses |
Giacomo Albi
(Coordinatore)
|
Probability for data science (2024/2025)
Codice insegnamento
4S009077
Docenti
Coordinatore
Crediti
9
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA
Periodo
I semestre dal 1 ott 2024 al 31 gen 2025.
Corsi Singoli
Autorizzato
Obiettivi di apprendimento
Il corso fornirà un'introduzione auto-contenuta e matematicamente rigorosa alle moderne tecniche di analisi dei dati e modellizzazione dei fenomeni aleatori, con particolare attenzione alle basi teoriche, proprie della teoria delle probabilità, necessarie per sviluppare soluzioni efficaci alle sfide caratterizzanti ambiti eterogenei, e.g., finanza, fault-detection, innovation forecasting, energy prediction, etc., tipici della Industria 4.0, con particolare riferimento alle sfide poste in ambito big data analytics. La presentazione di concetti, problemi e relative soluzioni teorico/pratiche, verrà orientata alle applicazioni, anche facendo uso di software statistico specifico (e.g.: Matlab, R, KNIME, etc.) sempre mantenendo un elevato livello di rigore matematico. All'interno del corso verranno ricordate le nozioni di base della teoria della Probabilità moderna (e.g.: variabili casuali, le loro distribuzioni e principali proprietà statistiche, teoremi di convergenza e applicazioni), con particolare attenzione ai processi stocastici fondamentali (e.g. : catene di Markov, processi di nascita e morte, teoria della code con applicazioni del mondo reale) e le loro applicazioni all'interno di scenari del mondo reale e caratterizzati dalla presenza di big data e serie temporali correlate. Al termine del corso lo studente dovrà dimostrare di: -conoscere le basi formali della teoria della probabilità -saper utilizzare i concetti di variabile aleatoria (tanto in ambito discreto che continuo) -saper sviluppare modelli basati su modelli probabilistici noti, e.g., v.a. binomiali, di Poisson, Gaussiane, misture di Gaussiane, etc. -aver compreso e saper utilizzare la teoria di base dei processi stocastici, con particolare riferimento alla teoria delle catene di Markov (a tempo discreto e continuo), ai processi di nascita e morte ed applicazioni correlate -conoscere e saper utilizzare i concetti di base in ambito statistico descrittivo ed inferenziale
Prerequisiti e nozioni di base
Analisi matematica ed algebra lineare
Programma
1. Probabilità, condizionamento e indipendenza.
2. Variabili aleatorie e distribuzioni. Distribuzioni discrete. Valor medio e varianza. Distribuzioni continue.
3. Vettori aleatori. Indipendenza di variabili aleatorie.
Covarianza e correlazione.
4. Teoremi limite: legge dei grandi numeri e teorema del limite centrale. Approssimazione normale.
5. Vettori aleatori normali.
6. Catene di Markov a tempo discreto. Metodi Markov Chain Monte Carlo.
7. Processi di Poisson ed elementi di teoria delle code. Catene di Markov a tempo continuo.
Bibliografia
Modalità didattiche
Tutti gli argomenti saranno illustrati a lezione. Materiale addizionale, quale esercizi settimanali, appunti ed ulteriori referenze, saranno disponibile alla pagina Moodle del corso.
Saranno specificamente tutelati gli studenti e le studentesse in situazioni di limitazione agli spostamenti per effetto di disposizioni nazionali o in situazioni particolari di fragilità. In questi casi gli studenti e le studentesse sono invitati a contattare direttamente il docente per organizzare le modalità di recupero più opportune.
Modalità di verifica dell'apprendimento
L'esame è costituito da una prova scritta che consiste nella risoluzione di alcuni esercizi. Può essere passato superando due prove intermedie durante il semestre o superando un appello ordinario durante una sessione d'esame. Per superare l'esame si deve ottenere una votazione di almeno 18/30.
Criteri di valutazione
Lo studente deve dimostrare di conoscere i concetti base della Probabilità e della teoria delle catene di Markov, di saper applicare la teoria alla risoluzione di problemi e di essere in grado di risolvere esercizi di difficoltà appropriata.
Criteri di composizione del voto finale
Il voto finale è interamente basato sull'esito della prova scritta
Lingua dell'esame
English
Sustainable Development Goals - SDGs
Questa iniziativa contribuisce al perseguimento degli Obiettivi di Sviluppo Sostenibile dell'Agenda 2030 dell'ONU.Maggiori informazioni su www.univr.it/sostenibilita