Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Academic calendar
The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.
Course calendar
The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..
Period | From | To |
---|---|---|
Primo semestre LM | Sep 30, 2024 | Dec 23, 2024 |
Periodo generico | Oct 1, 2024 | May 31, 2025 |
Secondo semestre LM | Feb 17, 2025 | May 23, 2025 |
Session | From | To |
---|---|---|
Sessione invernale LM | Jan 7, 2025 | Feb 14, 2025 |
Sessione estiva LM | May 26, 2025 | Jul 11, 2025 |
Sessione autunnale LM | Aug 25, 2025 | Sep 19, 2025 |
Session | From | To |
---|---|---|
Sessione autunnale a.a. 2023/2024 | Dec 4, 2024 | Dec 6, 2024 |
Sessione invernale a.a. 2023/2024 | Apr 2, 2025 | Apr 4, 2025 |
Sessione estiva a.a. 2024/2025 | Sep 3, 2025 | Sep 5, 2025 |
Exam calendar
Exam dates and rounds are managed by the relevant Economics Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.
Academic staff
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year It will be activated in the A.Y. 2025/2026
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Business Statistics (2024/2025)
Teaching code
4S00522
Academic staff
Coordinator
Credits
9
Language
Italian
Scientific Disciplinary Sector (SSD)
SECS-S/03 - ECONOMIC STATISTICS
Period
Primo semestre LM dal Sep 30, 2024 al Dec 23, 2024.
Courses Single
Not Authorized
Learning objectives
During the course, the main sources of official data will be studied and the main sampling techniques analyzed. The linear regression model will be introduced as one of the main statistical tools to examine survey data and for sales forecasting. Students will be provided with the cutting-edge statistical theory of sampling and linear regression model. These tools will then be applied to carry out market researches.
Prerequisites and basic notions
The following knowledge related to basic descriptive statistics and statistical inference is assumed to be acquired prior to the course by the students:
• Frequency distributions (univariate, bivariate, multivariate, frequency distributions in classes).
• Measures of central tendency (arithmetic mean, geometric mean, weighted mean, mean for frequency distributions in classes, median, mode, quantiles, and quartiles).
• Measures of variability (range, interquartile range, variance).
• Normal distribution.
• Point estimation (definition and properties of estimators, point estimation of the mean, proportion, variance).
• Interval estimation (mean, proportion, variance).
• Hypothesis testing (theory of tests, tests on the mean, tests on the variance, p-value).
Program
1. Distributions and random variables in the business and marketing contexts.
2. Sources of data and statistical information
• Primary data
• Secondary data
• Open data
3. Principles of statistical sampling for business processes and market surveys
• Sample and population parameters
• Probabilistic and non-probabilistic sampling
• Statistics and sampling distributions
• Sampling from finite and infinite populations
• Simple Random Sampling
• Stratified Sampling
4. Preparation and management of business statistical data and strategic information
• Data preparation, data management, data cleaning
• Data Quality Assessment
• Management and use of metadata
5. Representation and visualization of information
• Data visualization
• Graphical data analysis
• Graphical representations (histograms, area charts, pie charts, box plots, scatter plots)
6. Cluster Analysis and PCA
7. Summary indicators and comparison of business statistical data
• Statistical ratios
• Simple index numbers
8. Regression analysis
• Correlation and association between variables
• Simple linear regression model
• Multiple linear regression model
• Logistic model
9. Market Basket Analysis
• Associative rules and related metrics
• Algorithms
• Application in R
For detailed references to the teaching texts and their relation to the program topics, students are invited to carefully review the document "BUSINESS STATISTICS PROGRAM A.Y. 2024/2025" available on the course's Moodle platform.
Bibliography
Didactic methods
Classroom lectures are conducted with the support of the teaching materials provided (slides, exercises, OneNote notes, etc.) and examples and exercises (also carried out with Excel and R).
Learning assessment procedures
The assessment of learning is conducted through a written exam structured as follows:
15 short-answer, multiple-choice, or calculated questions
3 open-ended questions
There may be up to three short-answer, multiple-choice, or calculated questions (of the 15 questions provided) and up to one open-ended question (of the 3 questions provided) related to the syllabus of module 2 (3 CFU).
The questions can concern theoretical or methodological aspects, require the solution of exercises, or ask to discuss, comment on, and analyze applied problems based on the knowledge acquired during the course.
With the exception of supplementary materials, all topics presented in the lectures by the instructor and the sections of the textbooks indicated in the bibliography related to the course syllabus are an integral part of the learning assessment.
If there are inconsistencies in the answers provided in the written exam or if it is not possible to formulate a coherent evaluation, the instructor reserves the right to summon individual candidates for a supplementary oral exam (this is only provided in the aforementioned circumstance).
The supplementary oral exam may cover any topic from the course syllabus and may result in a final evaluation equal to, higher than, or lower than that achieved in the written exam, potentially altering the outcome even in relation to the pass/fail assessment.
The written exam is compulsory in person, on the days and times scheduled in the course's exam calendar. Only students who have registered for the exam through the dedicated virtual platform are allowed to take the written test.
The structure of the written exam will be very similar to the mock exams made available on the course's Moodle platform (see “mock_exam”).
For further information and details on the structure of the written exam, the access and conduct procedures, and the methods of acceptance/refusal of the grade and the recording of the results, students are invited to carefully review the document "BUSINESS STATISTICS EXAM INSTRUCTIONS A.Y. 2024/2025" available on the course's Moodle platform.
Evaluation criteria
The written exam (as well as any supplementary oral exam) aims to verify the knowledge of the course topics, the mastery of technical language, the candidate's clarity of presentation, the ability to independently apply the statistical methods learned during the course, the ability to approach the statistical analysis of business and consumer phenomena, and the use of the main statistical techniques in marketing, providing a correct interpretation of the results obtained.
Criteria for the composition of the final grade
The grade is expressed in a scale up to 30 Lode.
Exam language
Italiano
Type D and Type F activities
Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").
Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.
Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.
Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dalla Commissione didattica e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.
Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.
Scopri i percorsi formativi promossi dal Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali
CONTAMINATION LAB
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/it/clabverona
----------------------------------------------------------------------
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° | B-education: Sound ideas | D |
Cristina Florio
(Coordinator)
|
1° 2° | Ciclo tematico di conferenze “Italia nel mondo” - 2024/2025 | D |
Riccardo Stacchezzini
(Coordinator)
|
1° 2° | Ethical finance | D |
Giorgio Mion
(Coordinator)
|
1° 2° | Generative AI (Artificial Intelligence) for Business Communication | D |
Massimo Melchiori
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Methods and tools for literature reviews | D |
Cristina Florio
(Coordinator)
|
1° 2° | Sustainable business model frameworks | D |
Vincenzo Riso
(Coordinator)
|
1° 2° | Experience 3 Days as a Manager | D |
Nicola Cobelli
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Data Analysis Laboratory with R (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Data Visualization Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Python Laboratory | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Data Science Laboratory with SAP | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Advanced Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Excel Laboratory (Verona) | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Methods and tools for empirical research in management | D |
Cristina Florio
(Coordinator)
|
1° 2° | Methods and tools for empirical research in management | D |
Cristina Florio
(Coordinator)
|
1° 2° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° | Plan your professional future | D |
Paolo Roffia
(Coordinator)
|
1° 2° | Marketing plan | D |
Fabio Cassia
(Coordinator)
|
1° 2° | Programming in Matlab | D |
Marco Minozzo
(Coordinator)
|
1° 2° | Programming in SAS | D |
Marco Minozzo
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Artificial Intelligence, AI and Business Operations: Methods and Techniques | D |
Lapo Mola
(Coordinator)
|
1° 2° | The business consultant accountant | D |
Riccardo Stacchezzini
(Coordinator)
|
1° 2° | Relational soft skills for professional presence | D |
Federico Brunetti
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | French B1 | D | Not yet assigned |
1° 2° | French B2 | D | Not yet assigned |
1° 2° | English B2 | D | Not yet assigned |
1° 2° | English C1 | D | Not yet assigned |
1° 2° | Russian B1 | D | Not yet assigned |
1° 2° | Russian B2 | D | Not yet assigned |
1° 2° | Spanish B1 | D | Not yet assigned |
1° 2° | Spanish B2 | D | Not yet assigned |
1° 2° | German B1 | D | Not yet assigned |
1° 2° | German B2 | D | Not yet assigned |
Career prospects
Module/Programme news
News for students
There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details: only in this way will you be able to receive notification of all the notices from your teachers and your secretariat via email and also via the Univr app.
Linguistic training CLA
Graduation
List of thesis proposals
theses proposals | Research area |
---|---|
Brand identity e corporate brand storytelling | Various topics |
Il futuro del corporate reporting (COVID19) | Various topics |
Le scelte alimentari dei giovani italiani: quanto è importante la sostenibilità? | Various topics |
Nuovi scenari e nuovi contesti di acquisto e consumo di bevande alcoliche | Various topics |
Sfide e opportunità del contesto digitale | Various topics |
Tesi di Laurea in Economia Comportamentale | Various topics |
Internships
Gestione carriere
Student login and resources
Modalità di frequenza, erogazione della didattica e sedi
Le lezioni di tutti gli insegnamenti del corso di studio, così come le relative prove d’esame, si svolgono in presenza.
Peraltro, come ulteriore servizio agli studenti, è altresì previsto che tali lezioni siano registrate e che le registrazioni vengano messe a disposizione sui relativi moodle degli insegnamenti, salvo diversa comunicazione del singolo docente.
La frequenza non è obbligatoria.
Maggiori dettagli in merito all'obbligo di frequenza vengono riportati nel Regolamento del corso di studio disponibile alla voce Regolamenti nel menu Il Corso. Anche se il regolamento non prevede un obbligo specifico, verifica le indicazioni previste dal singolo docente per ciascun insegnamento o per eventuali laboratori e/o tirocinio.
È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.
Le sedi di svolgimento delle lezioni e degli esami sono le seguenti