Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

Academic calendar

The academic calendar shows the deadlines and scheduled events that are relevant to students, teaching and technical-administrative staff of the University. Public holidays and University closures are also indicated. The academic year normally begins on 1 October each year and ends on 30 September of the following year.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates..

Definition of lesson periods
Period From To
Periodo generico Oct 1, 2022 May 31, 2023
Primo semestre (lauree magistrali) Oct 3, 2022 Dec 23, 2022
Secondo semestre (lauree magistrali) Feb 27, 2023 May 19, 2023
Exam sessions
Session From To
Sessione invernale (lauree magistrali) Jan 9, 2023 Feb 17, 2023
Sessione estiva (lauree magistrali) May 22, 2023 Jul 7, 2023
Sessione autunnale (lauree magistrali) Aug 21, 2023 Sep 15, 2023
Degree sessions
Session From To
Sessione autunnale Dec 5, 2022 Dec 7, 2022
Sessione invernale Apr 4, 2023 Apr 6, 2023
Sessione estiva Sep 4, 2023 Sep 6, 2023

Exam calendar

Exam dates and rounds are managed by the relevant Economics Teaching and Student Services Unit.
To view all the exam sessions available, please use the Exam dashboard on ESSE3.
If you forgot your login details or have problems logging in, please contact the relevant IT HelpDesk, or check the login details recovery web page.

Exam calendar

Should you have any doubts or questions, please check the Enrolment FAQs

Academic staff

B C D F G M P R S

Bottiglia Roberto

roberto.bottiglia@univr.it 045 802 8224

Bracco Emanuele

emanuele.bracco@univr.it 045 802 8293

Bucciol Alessandro

alessandro.bucciol@univr.it 045 802 8278

Carluccio Emanuele Maria

emanuelemaria.carluccio@univr.it 045 802 8487

Chiaramonte Laura

laura.chiaramonte@univr.it

Cortese Mauro

mauro.cortese@univr.it

De Mari Michele

michele.demari@univr.it 045 802 8226

Faccincani Lorenzo

lorenzo.faccincani@univr.it 045 802 8610

Gnoatto Alessandro

alessandro.gnoatto@univr.it 045 802 8537

Mancini Cecilia

cecilia.mancini@univr.it

Minozzo Marco

marco.minozzo@univr.it 045 802 8234

Patacca Marco

marco.patacca@univr.it 0458028788

Picarelli Athena

athena.picarelli@univr.it 045 8028242

Pichler Flavio

flavio.pichler@univr.it 045 802 8273

Renò Roberto

roberto.reno@univr.it 045 802 8526

Santi Flavio

flavio.santi@univr.it 045 802 8239

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
Modules Credits TAF SSD
Between the years: 1°- 2°

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S02482

Coordinatore

Marco Minozzo

Credits

9

Language

Italian

Scientific Disciplinary Sector (SSD)

SECS-S/01 - STATISTICS

Period

Primo semestre (lauree magistrali) dal Oct 3, 2022 al Dec 23, 2022.

Learning objectives

The course provides to students in economics and finance an overview of the theory of probability at an intermediate level. Prerequisite to the course is an elementary knowledge of probability at the level of an undergraduate first or second year introductory course in probability and statistics. In particular, a basic knowledge of the following topics is recommended: most common univariate discrete and continuous distributions; weak law of large numbers; central limit theorem. The final objective of the course is to give an introduction to the advanced theory of conditional expectation, of stochastic processes in the discrete and continuous time domains and to stochastic integration.

Prerequisites and basic notions

Students are supposed to have acquired all notions and basic concepts usually taught in a first undergraduate university course in probability and statistics: main discrete and continuous univariate distributions, main limit theorems such as the weak law of large numbers and the central limit theorem.

Program

• Probability spaces and Kolmogorov’s axioms: sigma-algebras; event trees; elementary conditional probability; Bayes theorem; independence.
• Random variables: discrete, absolutely continuous and singular random variables; expectation; Chebyshev inequality; Jensen inequality; moment generating function.
• Multidimensional random variables: multidimensional discrete and continuous random variables; joint distribution function; joint density function; marginal and conditional distributions; marginal and conditional densities; independence; covariance; coefficient of correlation of Bravais; Cauchy-Schwarz inequality; joint moment generating function.
• Distributions of functions of random variables: transformations of random variables; method of the distribution function; distribution of the minimum and the maximum; method of the moment generating function; log-normal distribution; probability integral transform; transformations of vectors of random variables.
• Limits of random variables: infinite series of random variables; convergence in probability, in distribution, with probability one (almost surely) and in mean; weak law of large numbers and law of large numbers of Bernoulli for relative frequencies; central limit theorem; Borel’s lemma and Borel’s strong law of large numbers; order statistics; empirical distribution function.
• Conditional expectation: conditional probability and conditional expectation with respect to a finite partition; conditional expectation with respect to a sigma-algebra.
• Discrete time martingales: filtrations; martingales on finite probability spaces; martingales and stopping times; betting strategies and impossibility of a winning betting strategy.
• Continuous time stochastic processes: definitions and finite-dimensional distributions; filtrations; adapted processes; filtrations generated by a stochastic process; stationary processes; processes with stationary increments and with independent increments; counting processes and Poisson processes; Gaussian processes and Wiener processes (Brownian motions); Wiener process as a limit of a random walk; properties and irregularities of the sample trajectories (non derivability and infinite variation); Markov processes, transition probabilities and Chapman-Kolmogorov equations; continuous time martingales.
• Stochastic integrals: overview of Riemann-Stiltjes integral; definition and properties of Itô’s integral; Itô’s formula, properties and applications; martingales associated to a Wiener process; diffusions; geometric Brownian motion; Radom-Nikodym derivative; Girsanov's theorem.

Bibliography

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Didactic methods

In addition to the textbooks and the books in the reading list, other supporting material like written records of the lessons, handouts, exercises and past exam papers with solutions will be distributed during the course and will be made available on the E-learning platform of the University. Detailed indications, regarding the use of the textbooks, will be given during the course.

Course load is equal to 54 hours (equal to 9 ECTS). Exercises are an integral part of the course and, together with the classes, they are essential to a proper understanding of the topics of the course. The working language is Italian. In addition to lessons and exercise hours, there will be tutoring hours devoted to revision. More detailed information will be available in due course.

Lessons will be face-to-face. Due to the COVID-19 health emergency, the way lessons will be delivered might change during the course of the semester.

Learning assessment procedures

The final exam consists of a written test (lasting about 2 hours and 30 minutes) made up of a selection of exercises. For the written test, the Moodle's QUIZ tool might be used. During the exam, only a calculator can be used and no other material (books, notes, etc.) will be allowed. The written test will be followed by an oral test (compulsory), which can only be accessed by students who have obtained at least a pass in the written test. To take the tests, students must present themselves with a university card or a suitable identification document.

For the 2022/2023 academic year, it is likely that students will have the possibility to request (according to the rules established by the Rector) a remote examination, on the basis of problems directly connected to the COVID-19 heath emergency. Regardless of the modality (face-to-face or remote), the exam will be calibrated to guarantee the same level of difficulty. Finally, we remind that, as far as the examination methods are concerned, there are no differences according to the number of lessons attended.

Exam language

Italiano

Type D and Type F activities

Nei piani didattici di ciascun Corso di studio è previsto l’obbligo di conseguire un certo numero di crediti formativi mediante attività a scelta (chiamate anche "di tipologia D e F").

Oltre che in insegnamenti previsti nei piani didattici di altri corsi di studio e in certificazioni linguistiche o informatiche secondo quanto specificato nei regolamenti di ciascun corso, tali attività possono consistere anche in iniziative extracurriculari di contenuto vario, quali ad esempio la partecipazione a un seminario o a un ciclo di seminari, la frequenza di laboratori didattici, lo svolgimento di project work, stage aggiuntivo, eccetera.

Come per ogni altra attività a scelta, è necessario che anche queste non costituiscano un duplicato di conoscenze e competenze già acquisite dallo studente.

Quelle elencate in questa pagina sono le iniziative extracurriculari che sono state approvate dal Consiglio della Scuola di Economia e Management e quindi consentono a chi vi partecipa l'acquisizione dei CFU specificati, alle condizioni riportate nelle pagine di dettaglio di ciascuna iniziativa.

Si ricorda in proposito che:
- tutte queste iniziative richiedono, per l'acquisizione dei relativi CFU, il superamento di una prova di verifica delle competenze acquisite, secondo le indicazioni contenute nella sezione "Modalità d'esame" della singola attività;
- lo studente è tenuto a inserire nel proprio piano degli studi l'attività prescelta e a iscriversi all'appello appositamente creato per la verbalizzazione, la cui data viene stabilita dal docente di riferimento e pubblicata nella sezione "Modalità d'esame" della singola attività.

COMPETENZE TRASVERSALI
Scopri i percorsi formativi promossi dal  Teaching and learning centre dell'Ateneo, destinati agli studenti iscritti ai corsi di laurea, volti alla promozione delle competenze trasversali: https://talc.univr.it/it/competenze-trasversali


ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

Career prospects


Module/Programme news

News for students

There you will find information, resources and services useful during your time at the University (Student’s exam record, your study plan on ESSE3, Distance Learning courses, university email account, office forms, administrative procedures, etc.). You can log into MyUnivr with your GIA login details.

Graduation

List of theses and work experience proposals

theses proposals Research area
Tesi di laurea magistrale - Tecniche e problemi aperti nel credit scoring Statistics - Foundational and philosophical topics
Il metodo Monte Carlo per la valutazione di opzioni americane Various topics
Proposte Tesi A. Gnoatto Various topics

Internships


Linguistic training CLA


Gestione carriere


Area riservata studenti