Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Study Plan
The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.
1° Year
Modules | Credits | TAF | SSD |
---|
2° Year activated in the A.Y. 2014/2015
Modules | Credits | TAF | SSD |
---|
3° Year activated in the A.Y. 2015/2016
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Modules | Credits | TAF | SSD |
---|
Legend | Type of training activity (TTA)
TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.
Bases of applied physics (2013/2014)
Teaching code
4S02732
Teacher
Coordinator
Credits
6
Language
Italian
Scientific Disciplinary Sector (SSD)
FIS/07 - APPLIED PHYSICS
Period
I semestre dal Oct 1, 2013 al Jan 31, 2014.
Learning outcomes
This course aims at giving the basic knowledge of the concepts of mechanics, thermodynamics electromagnetism and optical to students and the capacity of using the laws of these phenomena in a predictive way. The aim of the course is also to furnish the fundamentals of the experimental method and the concepts by which students can autonomously attack problems involving such phenomena. The course comprises mathematical numerical exercises to allowing students to successfully operate in the final exam.
Program
Physical quantities and measure. Scalars and vectors. Derivative of a function, differentiation of simple functions. Fermat’s theroem and Rolle’s theorem.
Kinematics of material points. Position, displacement, velocity and acceleration. Rectilinear and curvilinear motion. Vector character of kinematic quantities and Cartesian components. The time-varying trajectory. Uniformly accelerated motions. Circular motion. Curvilinear planar motion. Dynamics of the material point. Newton's law. Action and reaction principle. Applications to motion on inclined planes, gravitational motion. The universal law of gravitation. Forces of practical interest: gravity, friction. Energy and work. Kinetic energy. Theorem of kinetic energy. Conservative forces. Potential energy. Mechanical energy conservation. Power.
Fluids. Pressure. Density. Stevin's law, Torricelli’s barometer, Archimedes' principle. Applications: floating in fluids, pressure in liquids, atmospheric pressure. Bernoulli's theorem for moving fluids. Applications: liquids through holes (Torricelli’s theorem), Venturimeter, force on aircrafts. Stoke’s force, viscosity.
The notion of temperature. Dilation of bodies (linear, superficial, volume). Thermic equililbrium, zero’s law of thermodynamics. T Specific heat. Heat. Thermometers. The absolute temperature. The absolute zero. State changes. Latent heat. Perfect gases. Law of gases. Thermometers.
Thermodynamics. Thermodynamic processes. The first law of thermodynamics. The second law of thermodynamics .Examples of applications. Thermodynamic circles. Internal energy. Thermodynamic work. Carnot' s circle. Circle efficiency. Refrigerator
Convection, conduction, irradiation.
Electrical phenomena in matter: conductors and insulators. Electric charges. Coulomb' s
law. Electric field. Work of the electric field. Electrostatic potential. Electrostatic potential energy. Calculation of the electric potential of a system of charges. Motion of charges in electric fields. Conductors. Dielectrics. Stationary electric current. Charge conservation in stationary regime. Ohm' slaw. Resistance. Joule's effect. Electromotive force. Kirchhoff laws.
Magnetism: phenomenology. Magnetic induction vector. Magnetic force on a moving charge and a current-carrying conductor. Application to wires, coils, solenoids. Forces between electric currents.
The principal optics phenomena. Reflection, concave and convex mirrors. Refraction, lenses, Lensmaker's equation.
Examination Methods
The final examination is conducted by a written elaborate of exercises on the diverse arguments treated in the course.