Studiare
In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.
Piano Didattico
Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:
Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.
1° Anno
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Insegnamenti | Crediti | TAF | SSD |
---|
Tre insegnamenti a scelta
Un insegnamento a scelta
Legenda | Tipo Attività Formativa (TAF)
TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.
Analytical mechanics (2016/2017)
Codice insegnamento
4S001102
Docente
Coordinatore
Crediti
6
Lingua di erogazione
Inglese
Settore Scientifico Disciplinare (SSD)
MAT/07 - FISICA MATEMATICA
Periodo
II sem. dal 1 mar 2017 al 9 giu 2017.
Obiettivi formativi
Il corso e` dedicato ad un approccio moderno e formale alla meccanica classica. Il principale obiettivo del corso consiste nell'introduzione di alcune tecniche di analisi globale e numerica, geometria differenziale e di sistemi dinamici al fine di formalizzare un modello di sistemi meccanici conservativi ad un numero finito di gradi di liberta`.
Alla fine del corso uno studente dovra` essere in grado di costruire un modello di fenomeni fisici conservativi per sistemi ad un numero finito di gradi di liberta`, scrivere le equazioni del moto sia da un punto di vista Lagrangiano che Hamiltoniano e ricavare le principali proprieta` dinamiche del sistema.
Programma
• Introduzione. Il corso iniziera` con un rapido ripasso di alcune nozioni di base di sistemi dinamici usando pero` il moderno linguaggio della geometria differenziale: campi vettoriali su varieta`, flusso di un campo, coniugazione di flussi. Derivata di Lie, integrali primi, foliazioni invarianti e riduzione dell'ordine. Sistemi meccanici in dimensione 1.
• Meccanica Newtoniana. La struttura geometrica dello spazio tempo di Galileo e assiomi della meccanica classica. Sistemi di particelle ed equazioni cardinali della dinamica. Campi di forze conservative. Massa in un campo centrale e il sistema dei due corpi.
• Principi variazionali. Introduzione al calcolo delle variazioni: il principio di Hamilton e l'equivalenza tra equazioni di Lagrange e di Newton per i sistemi conservativi. Trasformazione di Legendre ed equazioni di Hamilton.
• Meccanica Lagrangiana su varieta`. Sistemi vincolati: il principio di d'Alembert e le equazioni di Lagrange. Invarainza delle equazioni di Lagrange per cambiamenti di coordinate. Integrale di Jacobi. Coordinate cicliche, Teorema di Noether, integrali primi e riduzione di Routh.
• Meccanica Hamiltoniana. Equazioni di Hamilton, parentesi di Poisson. Teorema di Noether in ambiente Hamiltoniano.
• Corpi rigidi. Il gruppo delle rotazioni e sua rappresentazione matriciale. Velocita` angolare e algebra di Lie del gruppo delle rotazioni. Sistema di riferimento nello spazio e nel corpo. Equazioni di Euler.
Alcuni aspetti numerici verranno analizzati durante il corso. Il corso sara` anche accompagnato da seminari introduttivi alla meccanica geometrica, alla teoria geometrica del controllo con applicazioni robotiche e alla chirurgia robotica.
Autore | Titolo | Casa editrice | Anno | ISBN | Note |
---|---|---|---|---|---|
A. Fasano and S. Marmi | Analytical Mechanics: an Introduction. | Oxford University Press | 2006 | Graduate Texts | |
R. Abraham, J.E. Marsden and T.S. Ratiu | Manifolds, tensor analysis, and applications. (Edizione 3) | Applied Mathematical Sciences, 75 Springer–Verlag | 1988 | Testo utile nella fase introduttiva e di richiami o approfondimenti di Geometria Differenziale. | |
V.I. Arnol'd | Mathematical Methods of Classical Mechanics | Springer-Verlag | 1989 | Graduate Texts in Mathematics 60 |
Modalità d'esame
L'esame e` diviso in due parti. La prima parte (parte A) consiste in un esame scritto in cui verrano proposti due quesiti di carattere applicativo o teorico. A seguire l'esame sara` completato da una discussione orale dell'elaborato scritto e da ulteriori domande sul programma.