Studying at the University of Verona

A.A. 2019/2020

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2020 Jul 22, 2020
Sessione di laurea autunnale Oct 14, 2020 Oct 14, 2020
Sessione di laurea invernale Mar 16, 2021 Mar 16, 2021
Holidays
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff

A B C D G L M O R S Z

Albi Giacomo

giacomo.albi@univr.it +39 045 802 7913

Angeleri Lidia

lidia.angeleri@univr.it 045 802 7911

Baldo Sisto

sisto.baldo@univr.it 045 802 7935

Bos Leonard Peter

leonardpeter.bos@univr.it +39 045 802 7987

Boscaini Maurizio

maurizio.boscaini@univr.it

Busato Federico

federico.busato@univr.it

Caliari Marco

marco.caliari@univr.it +39 045 802 7904

Castellini Alberto

alberto.castellini@univr.it +39 045 802 7908

Cordoni Francesco Giuseppe

francescogiuseppe.cordoni@univr.it

Dai Pra Paolo

paolo.daipra@univr.it +39 0458027093

Daldosso Nicola

nicola.daldosso@univr.it +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca

luca.dipersio@univr.it +39 045 802 7968

Gregorio Enrico

Enrico.Gregorio@univr.it 045 802 7937

Liptak Zsuzsanna

zsuzsanna.liptak@univr.it +39 045 802 7032

Mantese Francesca

francesca.mantese@univr.it +39 045 802 7978

Marigonda Antonio

antonio.marigonda@univr.it +39 045 802 7809

Mazzuoccolo Giuseppe

giuseppe.mazzuoccolo@univr.it +39 0458027838

Migliorini Sara

sara.migliorini@univr.it +39 045 802 7908

Monti Francesca

francesca.monti@univr.it 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at univr.it 045 802 7986

Rizzi Romeo

romeo.rizzi@univr.it +39 045 8027088

Sansonetto Nicola

nicola.sansonetto@univr.it 049-8027932

Schiavi Simona

simona.schiavi@univr.it +39 045 802 7803

Schuster Peter Michael

peter.schuster@univr.it +39 045 802 7029

Solitro Ugo

ugo.solitro@univr.it +39 045 802 7977

Zivcovich Franco

franco.zivcovich@univr.it

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

CURRICULUM TIPO:
TeachingsCreditsTAFSSD
TeachingsCreditsTAFSSD
6
B
(MAT/05)
Final exam
32
E
-

1° Anno

TeachingsCreditsTAFSSD

2° Anno

TeachingsCreditsTAFSSD
6
B
(MAT/05)
Final exam
32
E
-
Teachings Credits TAF SSD
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




SPlacements in companies, public or private institutions and professional associations

Teaching code

4S001109

Coordinatore

Luca Di Persio

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/06 - PROBABILITY AND STATISTICS

Language of instruction

English en

Period

I semestre dal Oct 1, 2019 al Jan 31, 2020.

Learning outcomes

The Mathematical Finance course for the internationalized Master's Degree ( completely taught in English) aims to introduce the main concepts of discrete as well as continuous time, stochastic approach to the theory of modern financial markets. In particular, the fundamental purpose of the course is to provide the mathematical tools characterizing the setting of Itȏ stochastic calculus for the determination, the study and the analysis of models for options, interest rates models, financial derivatives, etc., determined by stochastic differential equations driven by Brownian motion and/or impulsive random noises. Basic ingredients are the foundation of the theory of continuous-time martingale, Girsanov theorems and the Feynman–Kac theorem and their applications to the theory of option pricing with specific examples in equities, also considering path-dependent options, and within the framework of interest rates models. Great attention will be also given to the practical study and realisation of concrete models characterising the modern approach to both the risk managment and option pricing frameworks, also by mean of numerical computations and computer oriented lessons. It is important to emphasize how the Stochastic Systems course is organized in such a way that students can concretely complete and further develop their own: °ability to establish profound connections with non-mathematical disciplines, both in terms of motivation of mathematical research and of the application of the results of such surveys; ° capacity of analysis, synthesis and abstraction; ° specific computational and computer skills; ° ability to understand texts, even advanced, of Mathematics in general and Applied Mathematics in particular; • ability to develop mathematical models for physical and natural sciences, while being able to analyze its limits and actual applicability, even from a computational point of view; ° skills concerning how to develop mathematical and statistical models for the economy and financial markets; ° capacity to extract qualitative information from quantitative data; ° knowledge of programming languages or specific software.

Program

[1] Stochastic analysis: basics

Basics on stochastic processes
Stochastic processes: main examples in discrete and continuous time
Stochastic integration
The Itô-Döblin lemma
SDEs: basics with examples ( e.g.: the linear case, multiplicative noise case)
Solution of SDEs as Markov processes
Feynman-Kac formula
Girsanov theorem
Stochastic control: basics with examples (e.g.: dynamic programming principle, Pontryagin maximum principle)

[2] Discrete time models
Contingent claims, value process, hedging strategies, completeness, arbitrage
Fundamental theorems of Asset Pricing (in discrete time)
Binomial trees
Random walk and pricing
Black and Scholes formula ( derived by binomial trees analysis )


[3] Brownian Motion (BM)
review of the main properties of the BM: filtration generated by BM, martingale property, quadratic variation, volatility, reflection properties, etc.

[4] Continuous time models
Black-Scholes-Merton Equation
Evolution of Portfolio/Option Values
Sensitivity analysis
The Martingale approach
Hedging and replicating strategies
Equity market models
Siegel paradox
Packages and Exotic options


[5] Interest rates models
Markovian Models of the Short Rate
Merton model
Stochastic interest rate for the Black and Scholes model
Hedging portfolio
Change of numeraire ( also under multiple risk sources )
Caps, floors, collars
Interest rates models
Vasicek model
Cox-Ingersoll-Ross model
Forward rates modelling
Arbitrage models for term structure
Heath-Jarrow-Morton framework
The Hull-White extended Vasicek model

[6] Portfolio choice and Asset Pricing
Bachelier and Samuelson models
Utility functions
The Merton problem ( value and static programming approach)
Utility maximization problem

[7] Miscellanea
Valuation of Options in Gaussian Models
Forward LIBORs
Swap rates modelling
Mean Field Games approach to systems of interacting financial agents
Calibration for Interest Rate models
Stochastic control and financial models (e.g.: the Heston model case)
Stochastic volatility models and applications
Polynomial/asyntotic espansions for financial models
SDEs on networks with financial applications

Bibliografia

Reference texts
Author Title Publishing house Year ISBN Notes
I. Karatzas and S. Shreve Brownian motion and stochastic calculus  
R. Cont, P. Tankov Financial Modelling With Jump Processes Chapman and Hall, CRC Press 2003
D. Lamberton and B. Lapeyre Introduction to Stochastic Calculus Applied to Finance  
A. F. McNeil, R. Frey, P. Embrechts Quantitative Risk Management:Concepts, Techniques and Tools Princeton University Press 2015
S. E. Shreve Stochastic Calculus for Finance II: Continuous-Time Models Springer, New York 2004
S. E. Shreve Stochastic Calculus for Finance I: The Binomial Asset Pricing Model Springer, New York 2004

Examination Methods

Oral exam with written exercise:
the exam is based on open questions as well as on the resolution of written exercises to be solved during the test itself. Questions, open-ended and exercises, aim at verify both the knowledge about arguments developed within the course, the solution of concrete problems belonging to Mathematical Finance, and to the acquired acquaintance of associated tools of stochastic analysis.

Tipologia di Attività formativa D e F

Academic year
I semestre From 10/1/19 To 1/31/20
years Teachings TAF Teacher
1° 2° Python programming language D Maurizio Boscaini (Coordinatore)
1° 2° SageMath F Zsuzsanna Liptak (Coordinatore)
1° 2° History of Modern Physics 2 D Francesca Monti (Coordinatore)
1° 2° History and Didactics of Geology D Guido Gonzato (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Teachings TAF Teacher
1° 2° Advanced topics in financial engineering D Luca Di Persio (Coordinatore)
1° 2° C Programming Language D Sara Migliorini (Coordinatore)
1° 2° C++ Programming Language D Federico Busato (Coordinatore)
1° 2° LaTeX Language D Enrico Gregorio (Coordinatore)
List of courses with unassigned period
years Teachings TAF Teacher
1° 2° Axiomatic set theory for mathematical practice F Peter Michael Schuster (Coordinatore)
1° 2° Corso Europrogettazione D Not yet assigned
1° 2° Corso online ARPM bootcamp F Not yet assigned
1° 2° ECMI modelling week F Not yet assigned
1° 2° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° Google summer of code (GSOC) F Not yet assigned
1° 2° Higher Categories - Seminar course F Lidia Angeleri (Coordinatore)

Career prospects


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.

Graduation

Allegati

Title Info File
pdf Come scrivere una tesi (.pdf) 31 KB, 30/06/21 
pdf Regolamento tesi 147 KB, 02/07/21 

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Tutorato per gli studenti

I docenti dei singoli Corsi di Studio erogano un servizio di tutorato volto a orientare e assistere gli studenti del triennio, in particolare le matricole, per renderli partecipi dell’intero processo formativo, con l’obiettivo di prevenire la dispersione e il ritardo negli studi, oltre che promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

TUTORATO PER GLI STUDENTI DELL’AREA DI SCIENZE E INGEGNERIA
Tutorato finalizzato a offrire loro un’attività di orientamento che possa essere di supporto per gli aspetti organizzativi e amministrativi della vita universitaria.
Le tutor attualemente di riferimento sono:
  • Dott.ssa Luana Uda, luana.uda@univr.it
  • Dott.ssa Roberta RIgaglia, roberta.rigaglia@univr.it

Tirocini e stage

Le attività di stage sono finalizzate a far acquisire allo studente una conoscenza diretta in settori di particolare attività per l’inserimento nel mondo del lavoro e per l’acquisizione di abilità specifiche di interesse professionale.
Le attività di stage sono svolte sotto la diretta responsabilità di un singolo docente presso studi professionali, enti della pubblica amministrazione, aziende accreditate dall’Ateneo veronese.
I crediti maturati in seguito ad attività di stage saranno attribuiti secondo quanto disposto nel dettaglio dal “Regolamento d’Ateneo per il riconoscimento dei crediti maturati negli stage universitari” vigente.

Tutte le informazioni in merito agli stage sono reperibili al link https://www.univr.it/it/i-nostri-servizi/stage-e-tirocini.
 

Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!


University Language Centre - CLA

Allegati


Attività didattiche alternative

Allegati

Title Info File
pdf Courses replacement 113 KB, 22/07/21 
pdf Learning Agreement UNITN - UNIVR 44 KB, 22/07/21 

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.