Studying at the University of Verona

A.A. 2019/2020

Academic calendar

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Academic calendar

Course calendar

The Academic Calendar sets out the degree programme lecture and exam timetables, as well as the relevant university closure dates. .

Definition of lesson periods
Period From To
I semestre Oct 1, 2019 Jan 31, 2020
II semestre Mar 2, 2020 Jun 12, 2020
Exam sessions
Session From To
Sessione invernale d'esame Feb 3, 2020 Feb 28, 2020
Sessione estiva d'esame Jun 15, 2020 Jul 31, 2020
Sessione autunnale d'esame Sep 1, 2020 Sep 30, 2020
Degree sessions
Session From To
Sessione di laurea estiva Jul 22, 2020 Jul 22, 2020
Sessione di laurea autunnale Oct 14, 2020 Oct 14, 2020
Sessione di laurea invernale Mar 16, 2021 Mar 16, 2021
Period From To
Festa di Ognissanti Nov 1, 2019 Nov 1, 2019
Festa dell'Immacolata Dec 8, 2019 Dec 8, 2019
Vacanze di Natale Dec 23, 2019 Jan 6, 2020
Vacanze di Pasqua Apr 10, 2020 Apr 14, 2020
Festa della Liberazione Apr 25, 2020 Apr 25, 2020
Festa del lavoro May 1, 2020 May 1, 2020
Festa del Santo Patrono May 21, 2020 May 21, 2020
Festa della Repubblica Jun 2, 2020 Jun 2, 2020
Vacanze estive Aug 10, 2020 Aug 23, 2020

Exam calendar

The exam roll calls are centrally administered by the operational unit   Science and Engineering Teaching and Student Services Unit
Exam Session Calendar and Roll call enrolment   sistema ESSE3 . If you forget your password to the online services, please contact the technical office in your Faculty or to the service credential recovery .

Exam calendar

Per dubbi o domande Read the answers to the more serious and frequent questions - F.A.Q. Examination enrolment

Academic staff


Albi Giacomo +39 045 802 7913

Angeleri Lidia 045 802 7911

Baldo Sisto 045 802 7935

Bos Leonard Peter +39 045 802 7987

Boscaini Maurizio

Busato Federico

Caliari Marco +39 045 802 7904

Castellini Alberto +39 045 802 7908

Cordoni Francesco Giuseppe

Dai Pra Paolo +39 0458027093

Daldosso Nicola +39 045 8027076 - 7828 (laboratorio)

Di Persio Luca +39 045 802 7968

Gregorio Enrico 045 802 7937

Liptak Zsuzsanna +39 045 802 7032

Mantese Francesca +39 045 802 7978

Marigonda Antonio +39 045 802 7809

Mazzuoccolo Giuseppe +39 0458027838

Migliorini Sara +39 045 802 7908

Monti Francesca 045 802 7910

Orlandi Giandomenico

giandomenico.orlandi at 045 802 7986

Rizzi Romeo +39 045 8027088

Sansonetto Nicola 049-8027932

Schiavi Simona +39 045 802 7803

Schuster Peter Michael +39 045 802 7029

Solitro Ugo +39 045 802 7977

Zivcovich Franco

Study Plan

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University. Please select your Study Plan based on your enrolment year.

Final exam

1° Anno


2° Anno

Final exam
Teachings Credits TAF SSD
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Other activities

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.

SPlacements in companies, public or private institutions and professional associations

Teaching code




Scientific Disciplinary Sector (SSD)


Language of instruction

English en


II semestre dal Mar 2, 2020 al Jun 12, 2020.

Learning outcomes

This course provides students with the basic concepts of Graph Theory and the basics of Discrete and Computational Geometry. At the end of the course, the student will know the main classical theorems of graph theory, in particular about structural properties, colorings, matchings, embeddings and flow problems. He/she will also be familiar with basic Discrete Geometry results and with some classical algorithms of Computational Geometry. He/she will have the perception of links with some problems in non mathematical contexts. he/she will be able to produce rigorous proofs on all these topics and he/she will be able to read articles and texts of Graph Theory and Discrete Geometry.


-Definitions and basic properties.
-Matching in bipartite graphs: Konig Theorem and Hall Theorem. Matching in general graphs: Tutte Theorem. Petersen Theorem.
-Connectivity: Menger's theorems.
-Planar Graphs: Euler's Formula, Kuratowski's Theorem.
-Colorings Maps: Four Colours Theorem, Five Colours Theorem, Brooks Theorem, Vizing Theorem.

-Convexity, convex sets convex combinations, separation. Radon's lemma. Helly's Theorem.
-Lattices, Minkowski's Theorem, General Lattices.
-Convex independent subsets, Erdos-Szekeres Theorem.
-Intersection patterns of Convex Sets, the fractional Helly Theorem, the colorful Caratheodory theorem.
-Embedding Finite Metric Space into Normed Spaces, the Johnson-Lindenstrauss Flattening Lemma
-Discrete surfaces and discrete curvatures.

-General overview: reporting vs counting, fixed-radius near neighbourhood problem.
-Convex-hull problem: Graham's scan and other algorithms.
-Polygons and Art Gallery problem. Art Gallery Theorem, polygon triangulation.
- Voronoi diagram and Fortune's algorithm.
- Delaunay triangulation properties and Minimum spanning tree.


Reference texts
Author Title Publishing house Year ISBN Notes
Diestel Graph Theory (Edizione 5) Springer 2016
Matousek Lectures on Discrete Geometry (Edizione 1) Springer 2002

Examination Methods

To pass the exam, students must show that:
- they know and understand the fundamental concepts of graph theory
- they know and understand the fundamental concepts of Discrete and Computational Geometry
- they have analysis and abstraction abilities
- they can apply this knowledge in order to solve problems and exercises and they can rigorously support their arguments.

Written test (2 hours).
The written exam on Graph Theory consists of three/four exercises and two questions (1 on general definition / concepts and 1 with a proof of a theorem presented during the lectures).

Oral Test (Mandatory)
It is a discussion with the lecturer on definitions and proofs discussed during the lectures about Discrete and Computational Geometry.

Tipologia di Attività formativa D e F

Academic year
I semestre From 10/1/19 To 1/31/20
years Teachings TAF Teacher
1° 2° Python programming language D Maurizio Boscaini (Coordinatore)
1° 2° SageMath F Zsuzsanna Liptak (Coordinatore)
1° 2° History of Modern Physics 2 D Francesca Monti (Coordinatore)
1° 2° History and Didactics of Geology D Guido Gonzato (Coordinatore)
II semestre From 3/2/20 To 6/12/20
years Teachings TAF Teacher
1° 2° Advanced topics in financial engineering D Luca Di Persio (Coordinatore)
1° 2° C Programming Language D Sara Migliorini (Coordinatore)
1° 2° C++ Programming Language D Federico Busato (Coordinatore)
1° 2° LaTeX Language D Enrico Gregorio (Coordinatore)
List of courses with unassigned period
years Teachings TAF Teacher
1° 2° Axiomatic set theory for mathematical practice F Peter Michael Schuster (Coordinatore)
1° 2° Corso Europrogettazione D Not yet assigned
1° 2° Corso online ARPM bootcamp F Not yet assigned
1° 2° ECMI modelling week F Not yet assigned
1° 2° ESA Summer of code in space (SOCIS) F Not yet assigned
1° 2° Google summer of code (GSOC) F Not yet assigned
1° 2° Higher Categories - Seminar course F Lidia Angeleri (Coordinatore)

Career prospects

Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA.



Title Info File
pdf Come scrivere una tesi (.pdf) 31 KB, 30/06/21 
pdf Regolamento tesi 147 KB, 02/07/21 

List of theses and work experience proposals

theses proposals Research area
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Mathematics Bachelor and Master thesis titles Various topics
Stage Research area
Internship proposals for students in mathematics Various topics

Tutorato per gli studenti

I docenti dei singoli Corsi di Studio erogano un servizio di tutorato volto a orientare e assistere gli studenti del triennio, in particolare le matricole, per renderli partecipi dell’intero processo formativo, con l’obiettivo di prevenire la dispersione e il ritardo negli studi, oltre che promuovere una proficua partecipazione attiva alla vita universitaria in tutte le sue forme.

Tutorato finalizzato a offrire loro un’attività di orientamento che possa essere di supporto per gli aspetti organizzativi e amministrativi della vita universitaria.
Le tutor attualemente di riferimento sono:
  • Dott.ssa Luana Uda,
  • Dott.ssa Roberta RIgaglia,

Tirocini e stage

Le attività di stage sono finalizzate a far acquisire allo studente una conoscenza diretta in settori di particolare attività per l’inserimento nel mondo del lavoro e per l’acquisizione di abilità specifiche di interesse professionale.
Le attività di stage sono svolte sotto la diretta responsabilità di un singolo docente presso studi professionali, enti della pubblica amministrazione, aziende accreditate dall’Ateneo veronese.
I crediti maturati in seguito ad attività di stage saranno attribuiti secondo quanto disposto nel dettaglio dal “Regolamento d’Ateneo per il riconoscimento dei crediti maturati negli stage universitari” vigente.

Tutte le informazioni in merito agli stage sono reperibili al link

Double degree

The University of Verona, through a network of agreements with foreign universities, offers international courses that enable students to gain a Double/Joint degree at the time of graduation. Indeed, students enrolled in a Double/Joint degree programme will be able to obtain both the degree of the University of Verona and the degree issued by the Partner University abroad - where they are expected to attend part of the programme -, in the time it normally takes to gain a common Master’s degree. The institutions concerned shall ensure that both degrees are recognised in the two countries.

Places on these programmes are limited, and admissions and any applicable grants are subject to applicants being selected in a specific Call for applications.

The latest Call for applications for Double/Joint Degrees at the University of Verona is available now!

University Language Centre - CLA


Attività didattiche alternative


Title Info File
pdf Courses replacement 113 KB, 22/07/21 
pdf Learning Agreement UNITN - UNIVR 44 KB, 22/07/21 

Further services

I servizi e le attività di orientamento sono pensati per fornire alle future matricole gli strumenti e le informazioni che consentano loro di compiere una scelta consapevole del corso di studi universitario.