Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Mathematics - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

1° Year 

ModulesCreditsTAFSSD

2° Year   activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
1 module between the following
Between the years: 1°- 2°
1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008270

Credits

6

Scientific Disciplinary Sector (SSD)

MAT/08 - ANALISI NUMERICA

Learning outcomes

The course will discuss the theory and practice of Finite Element and Volume Methods. The theoretical part will follow course notes provided by the Instructor, advanced textbooks on Differential Equations, Iterative Methods for Sparse Linear Systems and numerical methods of Optimization. A part of the course will be held in a Laboratory setting where the methods discussed will be implemented in Matlab, using either the commercial version provided by Mathworks or else the open source version GNU Octave. In addition, high level scientific languages such as FreeFem++ and Clawpack for the numerical solution of elliptic, parabolic and hyperbolic equations will be introduced. At the end of the course the student is expected to have an excellent knowledge of the scientific and computational aspects of the techniques used to solve Partial Differential Equations by means of Finite Elements and Volumes.

Educational offer 2024/2025

ATTENTION: The details of the course (teacher, program, exam methods, etc.) will be published in the academic year in which it will be activated.
You can see the information sheet of this course delivered in a past academic year by clicking on one of the links below: