Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Queste informazioni sono destinate esclusivamente agli studenti e alle studentesse già iscritti a questo corso.
Se sei un nuovo studente interessato all'immatricolazione, trovi le informazioni sul percorso di studi alla pagina del corso:

Laurea magistrale in Mathematics - Immatricolazione dal 2025/2026

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD

2° Anno   Attivato nell'A.A. 2022/2023

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Attivato nell'A.A. 2022/2023
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
1 module between the following
Tra gli anni: 1°- 2°
1 module between the following
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Further activities
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Codice insegnamento

4S008270

Coordinatore

Marco Caliari

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/08 - ANALISI NUMERICA

Periodo

Secondo semestre dal 7 mar 2022 al 10 giu 2022.

Obiettivi formativi

Nel corso si discuteranno la teoria e la pratica dei metodi degli elementi e dei volumi finiti. Per la parte teorica si seguiranno le note fornite dal docente, testi avanzati sulle equazioni differenziali, sui metodi iterativi per sistemi lineari sparsi e sui metodi numerici per l’ottimizzazione. Una parte del corso si terrà in laboratorio ove I metodi discussi verranno implementati in Matlab o in GNU Octave. Si introdurranno anche linguaggi scientifici ad alto livello per la soluzione di equazioni ellittiche, paraboliche ed iperboliche come FreeFem++ e Clawpack. Alla fine del corso ci si aspetta che gli studenti abbiano un’eccellente padronanza degli aspetti scientifici e computazionali delle tecniche usate per risolvere equazioni alle derivate parziali con il metodo degli elementi o dei volumi finiti.

Programma

Prerequisiti: analisi funzionale, principali metodi di risoluzione numerica di equazioni differenziali.

L'insegnamento sarà erogato in 52 ore, di cui 20 circa in laboratorio informatico.

Nell’insegnamento verranno trattati i seguenti argomenti:

* Principio di minimizzazione e formulazione debole, teoremi di esistenza, unicità e regolarità

* Approcci Rayleigh-Ritz e Galerkin, metodo degli elementi finiti, metodi per l’ottimizzazione, metodi per sistemi lineari sparsi

* Equazioni di trasporto e diffusione, diffusione artificiale, metodi di Galerkin generalizzati, elementi discontinui

* Equazioni iperboliche e paraboliche, metodo dei volumi finiti, problemi semi e completamente discretizzati

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità d'esame

L'esame intende accertare che lo studente sia in grado di produrre e riconoscere dimostrazioni rigorose nell'ambito del metodo degli Elementi e dei Volumi Finiti. La prova è orale. Opzionalmente, lo studente dovrà dimostrare di conoscere un linguaggio di programmazione e di un software specifico. In tal caso, una parte del programma è sostituita con un piccolo progetto da realizzarsi mediante il software scientifico FreeFem++ o Clawpack.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI