Studying at the University of Verona

Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.

This information is intended exclusively for students already enrolled in this course.
If you are a new student interested in enrolling, you can find information about the course of study on the course page:

Laurea magistrale in Mathematics - Enrollment from 2025/2026

The Study Plan includes all modules, teaching and learning activities that each student will need to undertake during their time at the University.
Please select your Study Plan based on your enrollment year.

CURRICULUM TIPO:

1° Year 

ModulesCreditsTAFSSD

2° Year   activated in the A.Y. 2022/2023

ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
activated in the A.Y. 2022/2023
ModulesCreditsTAFSSD
6
B
MAT/05
Final exam
32
E
-
Modules Credits TAF SSD
Between the years: 1°- 2°
1 module between the following
Between the years: 1°- 2°
1 module between the following
Between the years: 1°- 2°
Between the years: 1°- 2°
Further activities
4
F
-

Legend | Type of training activity (TTA)

TAF (Type of Educational Activity) All courses and activities are classified into different types of educational activities, indicated by a letter.




S Placements in companies, public or private institutions and professional associations

Teaching code

4S008279

Credits

6

Coordinator

Paolo Dai Pra

Language

English en

The teaching is organized as follows:

PART I en

Credits

3

Period

Secondo semestre

Academic staff

Paolo Dai Pra

PART II en

Credits

3

Period

Secondo semestre

Academic staff

Alberto Castellini

Learning outcomes

The objective is to introduce students to statistical modelling and exploratory data analysis. The mathematical foundations of Statistical Learning (supervised and unsupervised learning, deep learning) are developed with emphasis on the underlying abstract mathematical framework, aiming to provide a rigorous, self-contained derivation and theoretical analysis of the main models currently used in applications. Complimentary laboratory sessions will illustrate the use of both the key algorithms and relevant case studies, mainly by using standard software environments such as R or Python.