Studiare

In questa sezione è possibile reperire le informazioni riguardanti l'organizzazione pratica del corso, lo svolgimento delle attività didattiche, le opportunità formative e i contatti utili durante tutto il percorso di studi, fino al conseguimento del titolo finale.

Calendario accademico

Il calendario accademico riporta le scadenze, gli adempimenti e i periodi rilevanti per la componente studentesca, personale docente e personale dell'Università. Sono inoltre indicate le festività e le chiusure ufficiali dell'Ateneo.
L’anno accademico inizia il 1° ottobre e termina il 30 settembre dell'anno successivo.

Calendario accademico

Calendario didattico

Il calendario didattico indica i periodi di svolgimento delle attività formative, di sessioni d'esami, di laurea e di chiusura per le festività.

Definizione dei periodi di lezione
Periodo Dal Al
Primo semestre 3-ott-2022 27-gen-2023
Secondo semestre 6-mar-2023 16-giu-2023
Sessioni degli esami
Sessione Dal Al
Sessione invernale d'esame 30-gen-2023 3-mar-2023
Sessione estiva d'esame 19-giu-2023 31-lug-2023
Sessione autunnale d'esame 4-set-2023 29-set-2023
Sessioni di lauree
Sessione Dal Al
Sessione di laurea estiva 20-lug-2023 20-lug-2023
Sessione di laurea autunnale 12-ott-2023 12-ott-2023
Sessione di laurea invernale 14-mar-2024 14-mar-2024
Vacanze
Periodo Dal Al
Ponte Festa di tutti i Santi 31-ott-2022 1-nov-2022
Ponte dell'Immacolata Concezione 8-dic-2022 9-dic-2022
Vacanze natalizie 23-dic-2022 8-gen-2023
Vacanze di Pasqua 7-apr-2023 10-apr-2023
Festa della Liberazione 24-apr-2023 25-apr-2023
Festa del lavoro 1-mag-2023 1-mag-2023
Festa del Santo Patrono 21-mag-2023 21-mag-2023
Festa della Repubblica 2-giu-2023 2-giu-2023
Chiusura estiva 14-ago-2023 19-ago-2023

Calendario esami

Gli appelli d'esame sono gestiti dalla Unità Operativa Segreteria Corsi di Studio Scienze e Ingegneria.
Per consultazione e iscrizione agli appelli d'esame visita il sistema ESSE3.
Per problemi inerenti allo smarrimento della password di accesso ai servizi on-line si prega di rivolgersi al supporto informatico della Scuola o al servizio recupero credenziali

Calendario esami

Per dubbi o domande leggi le risposte alle domande più frequenti F.A.Q. Iscrizione Esami

Docenti

A B C D F G L M O P R S T Z

Albi Giacomo

symbol email giacomo.albi@univr.it symbol phone-number +39 045 802 7913

Albiero Andrea

symbol email andrea.albiero@univr.it

Angeleri Lidia

symbol email lidia.angeleri@univr.it symbol phone-number +39 045 802 7911

Baldo Sisto

symbol email sisto.baldo@univr.it symbol phone-number +39 045 802 7935

Bos Leonard Peter

symbol email leonardpeter.bos@univr.it

Caliari Marco

symbol email marco.caliari@univr.it symbol phone-number +39 045 802 7904

Castellini Alberto

symbol email alberto.castellini@univr.it symbol phone-number +39 045 802 7908

Combi Carlo

symbol email carlo.combi@univr.it symbol phone-number +39 045 802 7985

Cubico Serena

symbol email serena.cubico@univr.it symbol phone-number 045 802 8132

Dai Pra Paolo

symbol email paolo.daipra@univr.it symbol phone-number +39 045 802 7093

Daldosso Nicola

symbol email nicola.daldosso@univr.it symbol phone-number +39 045 8027076 - 7828 (laboratorio)

Delledonne Massimo

symbol email massimo.delledonne@univr.it symbol phone-number 045 802 7962; Lab: 045 802 7058

Di Persio Luca

symbol email luca.dipersio@univr.it symbol phone-number +39 045 802 7968

Fellin Giulio

symbol email giulio.fellin@univr.it

Fummi Franco

symbol email franco.fummi@univr.it symbol phone-number 045 802 7994

Gonzato Guido

symbol email guido.gonzato@univr.it symbol phone-number 045 802 8303

Gregorio Enrico

symbol email Enrico.Gregorio@univr.it symbol phone-number +39 045 802 7937

Laking Rosanna Davison

symbol email rosanna.laking@univr.it symbol phone-number +39 045 802 7838

Mantese Francesca

symbol email francesca.mantese@univr.it symbol phone-number +39 045 802 7978

Marigonda Antonio

symbol email antonio.marigonda@univr.it symbol phone-number +39 045 802 7809

Mazzuoccolo Giuseppe

symbol email giuseppe.mazzuoccolo@univr.it symbol phone-number +39 0458027838

Menegaz Gloria

symbol email gloria.menegaz@univr.it symbol phone-number +39 045 802 7024

Monti Francesca

symbol email francesca.monti@univr.it symbol phone-number +39 045 802 7910

Oliver Bonafoux Ramon

symbol email ramon.oliverbonafoux@univr.it

Orlandi Giandomenico

symbol email giandomenico.orlandi at univr.it symbol phone-number +39 045 802 7986

Pianezzi Daniela

symbol email daniela.pianezzi@univr.it

Pravadelli Graziano

symbol email graziano.pravadelli@univr.it symbol phone-number +39 045 802 7081
Foto Alice,  22 novembre 2017

Raffaele Alice

symbol email alice.raffaele@univr.it

Sansonetto Nicola

symbol email nicola.sansonetto@univr.it symbol phone-number +39 045 802 7932

Schuster Peter Michael

symbol email peter.schuster@univr.it symbol phone-number +39 045 802 7029

Segala Roberto

symbol email roberto.segala@univr.it symbol phone-number +39 045 802 7997

Solitro Ugo

symbol email ugo.solitro@univr.it symbol phone-number +39 045 802 7977

Tomazzoli Claudio

symbol email claudio.tomazzoli@univr.it

Zorzi Margherita

symbol email margherita.zorzi@univr.it symbol phone-number +39 045 802 7045

Piano Didattico

Il piano didattico è l'elenco degli insegnamenti e delle altre attività formative che devono essere sostenute nel corso della propria carriera universitaria.
Selezionare il piano didattico in base all'anno accademico di iscrizione.

CURRICULUM TIPO:

1° Anno 

InsegnamentiCreditiTAFSSD

2° Anno   Attivato nell'A.A. 2023/2024

InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Attivato nell'A.A. 2023/2024
InsegnamentiCreditiTAFSSD
6
B
MAT/05
Final exam
32
E
-
Insegnamenti Crediti TAF SSD
Tra gli anni: 1°- 2°
1 module between the following (a.a. 2022/23 Computational Algebra not activated; a.a. 2023/24 Homological Algebra not activated)
Tra gli anni: 1°- 2°
1 module between the following 
Tra gli anni: 1°- 2°
Tra gli anni: 1°- 2°
Further activities
4
F
-

Legenda | Tipo Attività Formativa (TAF)

TAF (Tipologia Attività Formativa) Tutti gli insegnamenti e le attività sono classificate in diversi tipi di attività formativa, indicati da una lettera.




S Stage e tirocini presso imprese, enti pubblici o privati, ordini professionali

Tipologia di Attività formativa D e F

Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.

1. Insegnamenti impartiti presso l'Università di Verona

Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).

Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.

2. Attestato o equipollenza linguistica CLA

Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:

  • Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
  • Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).

Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.

Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.

Modalità di inserimento a librettorichiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it

3. Competenze trasversali

Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali

Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.  

4. CONTAMINATION LAB

Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona

ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.

5. Periodo di stage/tirocinio

Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage. 

Verificare nel regolamento quali attività possono essere di tipologia D e quali di tipologia F.

Insegnamenti e altre attività che si possono inserire autonomamente a libretto

 

Primo semestre Dal 03/10/22 Al 27/01/23
anni Insegnamenti TAF Docente
Genetica D Massimo Delledonne (Coordinatore)
1° 2° Algoritmi D Roberto Segala (Coordinatore)
1° 2° Introduction to docker & kubernetes D Franco Fummi (Coordinatore)
1° 2° Progettazione di app mobile tramite react native D Graziano Pravadelli (Coordinatore)
Secondo semestre Dal 06/03/23 Al 16/06/23
anni Insegnamenti TAF Docente
1° 2° Algoritmi D Roberto Segala (Coordinatore)
1° 2° Linguaggio Programmazione LaTeX D Enrico Gregorio (Coordinatore)
1° 2° Linguaggio programmazione Python D Carlo Combi (Coordinatore)
1° 2° Organizzazione aziendale D Serena Cubico (Coordinatore)
1° 2° Storia e didattica della geologia D Guido Gonzato (Coordinatore)
Elenco degli insegnamenti con periodo non assegnato
anni Insegnamenti TAF Docente
1° 2° ECMI modelling week F Non ancora assegnato
1° 2° ESA Summer of code in space (SOCIS) F Non ancora assegnato
1° 2° Federated learning from zero to hero D Gloria Menegaz
1° 2° Google summer of code (GSOC) F Non ancora assegnato
1° 2° Mathematics mini courses Paolo Dai Pra (Coordinatore)

Codice insegnamento

4S008268

Coordinatore

Luca Di Persio

Crediti

6

Lingua di erogazione

Inglese en

Settore Scientifico Disciplinare (SSD)

MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA

Periodo

Secondo semestre dal 6-mar-2023 al 16-giu-2023.

Obiettivi di apprendimento

Il corso "Stochastic Calculus", erogato nell'ambito della Laurea Magistrale internazionalizzata in Matematica, si propone di introdurre la teoria dei processi stocastici a tempo continuo, con particolare riguardo alla definizione dei processi (sub/super/locale/semi-) martingala, insieme ai relativi teoremi principali quali, e.g. , il teorema di rappresentazione martingala, le disuguaglianze di Doob, il teorema di Girsanov, il teorema di arresto ottimo, ecc., per poi definire e costruire il processo stocastico moto Browniano, dimostrando le sue principali proprietà. Inoltre, verranno forniti gli strumenti dell'integrazione stocastica e del calcolo differenziale stocastico come, ad esempio, la formula di Ito-Doeblin, il teorema di Feynman-Kac, ecc., così da introdurre le basi della teoria delle equazioni differenziali stocastiche, considerando anche applicazioni in, e.g., biologia, finanza, ed evoluzione delle popolazioni.

Prerequisiti e nozioni di base

Strumenti di base del calcolo delle probabilità, e.g.: definizione di v.a. discrete/continue, teorema centrale del limite, catene di Markov a tempo discreto/continuo.

Programma

* Probabilità: richiami e risultati di base
* Processi stocastici: richiami, definizioni e proprietà principali; Processi Martingala; Teorema del campionamento opzionale; Variazione quadratica (per processi stocastici in generale e martingale in particolare);
* Processi stocastici a tempo discreto: richiami ed enfasi sulla passeggiata aleatoria (a partire dal modello binomiale, anche in più di 1 dimensione);
* Diverse costruzioni del moto Browniano: Teorema di consistenza di Kolmogorov / Kolmogorov-
Cénstor;
* Proprietà del moto browniano
* Derivazione / costruzione / e nozioni di base degli integrali stocastici (Ito, Stratonovich)
* Teorema di Ito-Doeoblin: Criteri di Lévy / Teorema di Rappresentanzione Martingala
* Approccio Stratonovich / Teorema di rappresentazione di Ito (applicazioni / esempi)
* Processi di Markov e relazione (i) con il moto browniano [ulteriori proprietà del mB]
* Formula di Girsanov / Teorema di Cameron-Martin (Girsanov) e Martingala esponenziale
* Costruzione e derivazione rigorosa di equazioni differenziali stocastiche
* Soluzioni forti / Lemma di Gronwall/ Soluzioni deboli (per EDS)
* Diffusioni / Approccio via teoria dei semigruppi / Proprietà di Markov
* Formula di Dynkin / equazioni di Kolmogorov / teorema di Feynman-Kac
* Interazione tra Equazioni Differenziali (deterministiche) e EDS (tramite il teorema di Feynman-Kac)
* Applicazioni EDS in ambito finanziario

Bibliografia

Visualizza la bibliografia con Leganto, strumento che il Sistema Bibliotecario mette a disposizione per recuperare i testi in programma d'esame in modo semplice e innovativo.

Modalità didattiche

Lezioni frontali con condivisione di slides, lecture notes, specifiche referenze bibliografiche per particolari approfondimenti teorici.

Modalità di verifica dell'apprendimento

Esame orale con esercizi scritti:
l'esame è basato su domande a risposta aperta e/o sulla presentazione di un progetto concordato con il docente del corso e/o sulla discussione di esercizi da svolgere per iscritto nel corso della prova. Le domande, aperte ed esercizi, mirano alla verifica delle conoscenze relative agli argomenti sviluppati nel programma del corso, nonché alla risoluzione di problemi concreti ed alla acquisita conoscenza degli associati strumenti di modellazione stocastica.

Le/gli studentesse/studenti con disabilità o disturbi specifici di apprendimento (DSA), che intendano richiedere l'adattamento della prova d'esame, devono seguire le indicazioni riportate QUI

Criteri di valutazione

Valutazione della comprensione e capacità di utilizzo dei principali strumenti dell'analisi stocastica, con enfasi sulla loro rigorosa definizione/derivazione analitica.

Criteri di composizione del voto finale

Il voto finale è il risultato della valutazione della prova orale finale, con possibile inclusione delle valutazioni sovlte in itinere relativamente a progetti di approfondimento (opzionalI) svolti dallo studente .

Lingua dell'esame

Inglese / English

Prospettive


Avvisi degli insegnamenti e del corso di studio

Per la comunità studentesca

Se sei già iscritta/o a un corso di studio, puoi consultare tutti gli avvisi relativi al tuo corso di studi nella tua area riservata MyUnivr.
In questo portale potrai visualizzare informazioni, risorse e servizi utili che riguardano la tua carriera universitaria (libretto online, gestione della carriera Esse3, corsi e-learning, email istituzionale, modulistica di segreteria, procedure amministrative, ecc.).
Entra in MyUnivr con le tue credenziali GIA: solo così potrai ricevere notifica di tutti gli avvisi dei tuoi docenti e della tua segreteria via mail e anche tramite l'app Univr.

Attività didattiche alternative

Per rendere il percorso di studi più flessibile, è possibile chiedere di sostituire alcuni insegnamenti con altri del medesimo corso di studio in Mathematics all'Università degli Studi di Verona (qualora gli obiettivi formativi degli insegnamenti che si intendono sostituire siano già stati raggiunti nella carriera pregressa), oppure con altri del corso di studio in Mathematics all'Università degli Studi di Trento.

Documenti


Modalità e sedi di frequenza

Come riportato nel regolamento didattico, la frequenza è in generale non obbligatoria, con la sola eccezione di alcune attività laboratoriali. Per queste sarà chiaramente indicato nella scheda del corrispondente insegnamento l'ammontare di ore per cui è richiesta la frequenza obbligatoria.

È consentita l'iscrizione a tempo parziale. Per saperne di più consulta la pagina Possibilità di iscrizione Part time.

Le attività didattiche del corso di studi si svolgono negli spazi dell’area di Scienze e Ingegneria che è composta dagli edifici di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 e Piramide, siti nel polo di Borgo Roma. 
Le lezioni frontali si tengono nelle aule di Ca’ Vignal 1, Ca’ Vignal 2, Ca’ Vignal 3 mentre le esercitazioni pratiche nei laboratori didattici dedicati alle varie attività.

Caratteristiche dei laboratori didattici a disposizione degli studenti

  • Laboratorio Alfa
    • 50 PC disposti in 13 file di tavoli
    • 1 PC per docente collegato a un videoproiettore 8K Ultra Alta Definizione per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Tutti i PC sono accessibili da persone in sedia a rotelle
  • Laboratorio Delta
    • 120 PC in 15 file di tavoli
    • 1 PC per docente collegato a due videoproiettori 4K per le esercitazioni
    • Configurazione PC: Intel Core i3-7100, 8GB RAM, 250GB SSD, monitor 24", Linux Ubuntu 24.04
    • Un PC è su un tavolo ad altezza variabile per garantire un accesso semplificato a persone in sedia a rotelle
  • Laboratorio Gamma (Cyberfisico)
    • 19 PC in 3 file di tavoli
    • 1 PC per docente con videoproiettore 4K
    • Configurazione PC: Intel Core i7-13700, 16GB RAM, 512GB SSD, monitor 24", Linux Ubuntu 24.04
  • Laboratorio VirtualLab
    • Accessibile via web: https://virtualab.univr.it
    • Emula i PC dei laboratori Alfa/Delta/Gamma
    • Usabile dalla rete universitaria o tramite VPN dall'esterno
    • Permette agli studenti di lavorare da remoto (es. biblioteca, casa) con le stesse funzionalità dei PC di laboratorio

Caratteristiche comuni:

  • Tutti i PC hanno la stessa suite di programmi usati negli insegnamenti di laboratorio
  • Ogni studente ha uno spazio disco personale di XXX GB, accessibile da qualsiasi PC
  • Gli studenti quindi possono usare qualsiasi PC in qualsiasi laboratorio senza limitazioni ritrovando sempre i documenti salvati precedentemente

Questa organizzazione dei laboratori offre flessibilità e continuità nel lavoro degli studenti, consentendo l'accesso ai propri documenti e all'ambiente di lavoro da qualsiasi postazione o da remoto.


Gestione carriere


Area riservata studenti


Prova Finale

Scadenziari e adempimenti amministrativi

Per gli scadenziari, gli adempimenti amministrativi e gli avvisi sulle sessioni di laurea, si rimanda al servizio Sessioni di laurea - Scienze e Ingegneria.

Necessità di attivare un tirocinio per tesi

Per stage finalizzati alla stesura della tesi di laurea, non è sempre necessaria l'attivazione di un tirocinio tramite l'Ufficio Stage. Per maggiori informazioni, consultare il documento dedicato, che si trova nella sezione "Documenti" del servizio dedicato agli stage e ai tirocini.

Regolamento della prova finale

La prova finale prevede la preparazione sotto la guida di un relatore di un elaborato scritto (tesi), che può consistere nella trattazione di un argomento teorico, o nella risoluzione di un problema specifico, o nella descrizione di un progetto di lavoro, o di un'esperienza fatta in un'azienda, in un laboratorio, in una scuola ecc. La tesi, preferibilmente redatta in TeX/LaTeX/AMSTeX e usando il pacchetto LaTeX Frontespizio, può essere inviata preliminarmente in formato elettronico ai membri della Commissione Valutazione Tesi e dovrà essere presentata, in duplice copia, al momento della discussione. La tesi potrà essere redatta anche in lingua inglese.

La discussione della tesi, che dovrà durare indicativamente tra i venti e i trenta minuti, avverrà davanti ad una Commissione Valutazione Tesi nominata dal Presidente del collegio Didattico di Matematica. ll Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione Valutazione Tesi è composta da almeno tre Docenti tra cui possibilmente il Relatore. Ogni Commissione Valutazione Tesi potrà valutare più studenti in funzione del contenuto del lavoro da essi presentato. La discussione della tesi viene effettuata durante i trenta giorni precedenti la data stabilita per la sessione di Laurea, ne viene data adeguata comunicazione ed è aperta al pubblico.

La Commissione Valutazione Tesi attribuisce ad ogni studente un punteggio della prova finale che va da zero a cinque. La valutazione della prova finale si articola in maniera tale da tenere conto delle conoscenze acquisite dallo studente durante il lavoro di tesi, del loro grado di comprensione, dell'autonomia di giudizio, delle capacità dimostrate dallo studente di applicare dette conoscenze e di comunicare efficacemente e compiutamente l'insieme degli esiti del lavoro ed i principali risultati ottenuti (si vedano la Tabella 1 per tesi di laurea triennale e la Tabella 2 per tesi di laurea magistrale, in calce al presente regolamento). Il Presidente della Commissione Valutazione Tesi invia una relazione, firmata da tutti i componenti della Commissione, al Presidente della Commissione di Esame Finale indicando per ogni studente il punteggio attribuito per l'esame finale ed un eventuale breve giudizio.

La Commissione di Esame Finale, unica per tutti gli studenti di quella sessione di Laurea, viene nominata dal Presidente del Collegio Didattico di Matematica. Il Presidente della commissione è il professore di ruolo di più alto grado accademico. La Commissione di Esame Finale deve essere composta da un Presidente e almeno da altri quattro Commissari scelti tra i docenti dell'Ateneo.

La Commissione di Esame Finale determina per ogni studente il punteggio finale sommando la media, pesata rispetto ai relativi CFU, espressa in centodecimi, dei voti degli esami del piano di studi, escluse le attività in sovrannumero, con il punteggio della prova finale. Aggiunge inoltre il punteggio attribuito alla carriera dello studente, da zero a due (si veda la Tabella 3, in calce al presente regolamento). Il voto finale, espresso in centodecimi, si ottiene arrotondando all'intero più vicino (all'intero superiore, in caso di equidistanza) il punteggio ottenuto, senza eccedere 110 centodecimi e assegnando la lode solo con l'unanimità della Commissione di Esame Finale al candidato che abbia raggiunto i 110 centodecimi dopo l'arrotondamento.

La Commissione di Esame Finale procede alla proclamazione dei nuovi Laureati in Matematica Applicata o Laureati magistrali in Mathematics con una cerimonia pubblica ed ufficiale.

Documenti

Titolo Info File
File pdf 1. Come scrivere una tesi pdf, it, 31 KB, 02/11/22
File pdf 2. How to write a thesis pdf, en, 31 KB, 02/11/22
File pdf 5. Regolamento tesi pdf, it, 171 KB, 20/03/24

Elenco delle proposte di tesi

Proposte di tesi Area di ricerca
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Hamilton-Jacobi theories, including dynamic programming
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Manifolds
Controllo di sistemi multiagente Calculus of variations and optimal control; optimization - Optimality conditions
Formule di rappresentazione per gradienti generalizzati Mathematics - Analysis
Formule di rappresentazione per gradienti generalizzati Mathematics - Mathematics
Tesi assegnate a studenti di matematica Argomenti vari

Erasmus+ e altre esperienze all’estero