Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Type D learning activities are the student's choice, type F activities are additional knowledge useful for job placement (internships, transversal skills, project works, etc.). According to the Teaching Regulations of the Course, some activities can be chosen and entered independently in the booklet, others must be approved by a special committee to verify their consistency with the study plan. Type D or F learning activities can be covered by the following activities.
1. Modules taught at the University of Verona
Include the modules listed below and/or in the Course Catalogue (which can also be filtered by language of delivery via Advanced Search).
Booklet entry mode: if the teaching is included among those listed below, the student can enter it independently during the period in which the curriculum is open; otherwise, the student must make a request to the Secretariat, sending the form to carriere.scienze@ateneo.univr.it during the period indicated.
2. CLA certificate or language equivalency
In addition to those required by the curriculum/study plan, the following are recognized for those matriculated from A.Y. 2021/2022:
- English language: 3 CFUs are recognized for each level of proficiency above that required by the course of study (if not already recognized in the previous course of study).
- Other languages and Italian for foreigners: 3 CFUs are recognized for each proficiency level starting from A2 (if not already recognized in the previous study cycle).
These CFUs will be recognized, up to a maximum of 6 CFUs in total, of type F if the study plan allows it, or of type D. Additional elective credits for language knowledge may be recognized only if consistent with the student's educational project and if adequately justified.
Those enrolled until A.Y. 2020/2021 should consult the information found here.
Method of inclusion in the booklet: request the certificate or equivalency from CLA and send it to the Student Secretariat - Careers for the inclusion of the exam in the career, by email: carriere.scienze@ateneo.univr.it
3. Transversal skills
Discover the training paths promoted by the University's TALC - Teaching and learning center intended for students regularly enrolled in the academic year of course delivery https://talc.univr.it/it/competenze-trasversali
Mode of inclusion in the booklet: the teaching is not expected to be included in the curriculum. Only upon obtaining the Open Badge will the booklet CFUs be automatically validated. The registration of CFUs in career is not instantaneous, but there will be some technical time to wait.
4. CONTAMINATION LAB
The Contamination Lab Verona (CLab Verona) is an experiential course with modules on innovation and enterprise culture that offers the opportunity to work in teams with students from all areas to solve challenges set by companies and organisations.
Upon completion of a CLab, students will be entitled to receive 6 CFU (D- or F-type credits).
Find out more: https://www.univr.it/clabverona
PLEASE NOTE: In order to be admitted to any teaching activities, including those of your choice, you must be enrolled in the academic year in which the activities in question are offered. Students who are about to graduate in the December and April sessions are therefore advised NOT to undertake extracurricular activities in the new academic year in which they are not enrolled, as these graduation sessions are valid for students enrolled in the previous academic year. Therefore, students who undertake an activity in an academic year in which they are not enrolled will not be granted CFU credits.
5. Internship/internship period
In addition to the CFUs stipulated in the curriculum/study plan (check carefully what is indicated on the Teaching Regulations): here information on how to activate the internship.
Check in the regulations which activities can be Type D and which can be Type F.
Modules and other activities that can be entered independently in the booklet
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Genetics | D |
Massimo Delledonne
(Coordinator)
|
|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
|
1° 2° | Introduction to Docker | D |
Franco Fummi
(Coordinator)
|
|
1° 2° | Mobile app design by using React Native | D |
Graziano Pravadelli
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Python programming language | D |
Carlo Combi
(Coordinator)
|
1° 2° | Organization Studies | D |
Serena Cubico
(Coordinator)
|
1° 2° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | ECMI modelling week | F | Not yet assigned |
1° 2° | ESA Summer of code in space (SOCIS) | F | Not yet assigned |
1° 2° | Federated learning from zero to hero | D |
Gloria Menegaz
|
1° 2° | Google summer of code (GSOC) | F | Not yet assigned |
1° 2° | Mathematics mini courses |
Paolo Dai Pra
(Coordinator)
|
Numerical modelling and optimization (2022/2023)
The teaching is organized as follows:
Learning objectives
The aim of the first module is to deepen the knowledge and skills especially in the modern theory of dynamical systems and give the student a solid appreciation of the deep connections between mathematics and other scientific disciplines, both in terms of the mathematical problems that they inspire and the important role that mathematics plays in scientific research and industry. Mathematical software tools, and others, will be used to implement algorithms for the solution of the real world problems studied during the course. At the end of the course the student is expected to be able to complete professional and technical tasks of a high level in the context of mathematical modelling and computation, both working alone and in groups. In particular the student will be able to write a model of a real problem, to recognise the effective parameters and analyse the model and its possible implications. The second module wants to provide sufficient theoretical and numerical background for the optimal control of dynamical systems. Such problems will be developed by means of real application examples, and recent research studies. At the end of the course students will be able to decide which numerical method is suitable for the solution of some specific optimal control problems. He/She will be able to provide theoretical results on the controllability and stability of certain optimal control problem and numerical methods. He/She will be able to develop his/her own code, and capable choose the appropriate optimization method for each application shown during the course.
Prerequisites and basic notions
- Multivariate differential calculus, linear algebra, foundations of dynamical systems
- Basic knowledge of a scientific programming language (python / matlab / octave)
Bibliography
Criteria for the composition of the final grade
Artimetic average of the two parts, with the possible integration of an oral and / or project