Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
This information is intended exclusively for students already enrolled in this course.If you are a new student interested in enrolling, you can find information about the course of study on the course page:
Laurea magistrale in Mathematics - Enrollment from 2025/2026Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Periodo di stage/tirocinio
Oltre ai CFU previsti dal piano di studi (verificare attentamente quanto indicato sul Regolamento Didattico): qui informazioni su come attivare lo stage.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° | Genetics | D |
Massimo Delledonne
(Coordinator)
|
|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Algorithms | D |
Roberto Segala
(Coordinator)
|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Organization Studies | D |
Serena Cubico
(Coordinator)
|
1° 2° | History and Didactics of Geology | D |
Guido Gonzato
(Coordinator)
|
years | Modules | TAF | Teacher | |
---|---|---|---|---|
1° 2° | Advanced topics in financial engineering | F | Not yet assigned | |
1° 2° | ECMI modelling week | F | Not yet assigned | |
1° 2° | ESA Summer of code in space (SOCIS) | F | Not yet assigned | |
1° 2° | Google summer of code (GSOC) | F | Not yet assigned | |
1° 2° | Mathematics mini courses |
Sisto Baldo
(Coordinator)
|
||
1° 2° 3° | Python programming language | D |
Giulio Mazzi
(Coordinator)
|
Foundation of data analysis (2021/2022)
Teaching code
4S008278
Teacher
Coordinator
Credits
6
Also offered in courses:
- Continuous optimization for data science of the course Master's degree in Data Science
Language
English
Scientific Disciplinary Sector (SSD)
MAT/08 - NUMERICAL ANALYSIS
Period
Primo semestre dal Oct 4, 2021 al Jan 28, 2022.
Learning outcomes
After successful completion of the module students will be able to understand and apply the basic notions, concepts, and methods of computational linear algebra, convex optimization and differential geometry used for data analysis. In particular, they will master the use of singular value decomposition method as well as random matrices for low dimensional data representations, including fundamentals of sparse recovery problems, as e.g., compressed sensing, low rank matrix recovery, and dictionary learning algorithms. The students will be also able to manage the representation of data as clusters around manifolds in high dimensions and in random graphs, acquiring methods to construct local charts and clusters for the data. In complementary laboratory sessions they will get acquainted with suitable programming tools and environment in order to analyse relevant case studies.
Program
* Introduction to optimization
- optimality conditions
- numerical methods
* Singular Value Decomposition:
- Best k-rank approximation, Randomized SVD
- Principal Component Analysis, Pseudo-Inverse.
* Compressed Sensing
- Basis pursuit problem: l1-minimization and sparse recovery
- Application to signals and images reconstruction.
* Data Analysis
- Dimensionality reduction techniques: (Local Linear Embedding, ISOMAP, diffusion map).
- Supervised learning for classification: Support Vector Machine
- Unsupervised learning for clustering: K-means.
- Artificial Neural Networks and applications.
Bibliography
Examination Methods
The exam consists of an oral examination with written questions and discussion. The development of a project is encouraged (but not mandatory) as an integration of the oral examination.