Studying at the University of Verona
Here you can find information on the organisational aspects of the Programme, lecture timetables, learning activities and useful contact details for your time at the University, from enrolment to graduation.
Type D and Type F activities
Le attività formative di tipologia D sono a scelta dello studente, quelle di tipologia F sono ulteriori conoscenze utili all’inserimento nel mondo del lavoro (tirocini, competenze trasversali, project works, ecc.). In base al Regolamento Didattico del Corso, alcune attività possono essere scelte e inserite autonomamente a libretto, altre devono essere approvate da apposita commissione per verificarne la coerenza con il piano di studio. Le attività formative di tipologia D o F possono essere ricoperte dalle seguenti attività.
1. Insegnamenti impartiti presso l'Università di Verona
Comprendono gli insegnamenti sotto riportati e/o nel Catalogo degli insegnamenti (che può essere filtrato anche per lingua di erogazione tramite la Ricerca avanzata).
Modalità di inserimento a libretto: se l'insegnamento è compreso tra quelli sottoelencati, lo studente può inserirlo autonomamente durante il periodo in cui il piano di studi è aperto; in caso contrario, lo studente deve fare richiesta alla Segreteria, inviando a carriere.scienze@ateneo.univr.it il modulo nel periodo indicato.
2. Attestato o equipollenza linguistica CLA
Oltre a quelle richieste dal piano di studi, per gli immatricolati dall'A.A. 2021/2022 vengono riconosciute:
- Lingua inglese: vengono riconosciuti 3 CFU per ogni livello di competenza superiore a quello richiesto dal corso di studio (se non già riconosciuto nel ciclo di studi precedente).
- Altre lingue e italiano per stranieri: vengono riconosciuti 3 CFU per ogni livello di competenza a partire da A2 (se non già riconosciuto nel ciclo di studi precedente).
Tali cfu saranno riconosciuti, fino ad un massimo di 6 cfu complessivi, di tipologia F se il piano didattico lo consente, oppure di tipologia D. Ulteriori crediti a scelta per conoscenze linguistiche potranno essere riconosciuti solo se coerenti con il progetto formativo dello studente e se adeguatamente motivati.
Gli immatricolati fino all'A.A. 2020/2021 devono consultare le informazioni che si trovano qui.
Modalità di inserimento a libretto: richiedere l’attestato o l'equipollenza al CLA e inviarlo alla Segreteria Studenti - Carriere per l’inserimento dell’esame in carriera, tramite mail: carriere.scienze@ateneo.univr.it
3. Competenze trasversali
Scopri i percorsi formativi promossi dal TALC - Teaching and learning center dell'Ateneo, destinati agli studenti regolarmente iscritti all'anno accademico di erogazione del corso https://talc.univr.it/it/competenze-trasversali
Modalità di inserimento a libretto: non è previsto l'inserimento dell'insegnamento nel piano di studi. Solo in seguito all'ottenimento dell'Open Badge verranno automaticamente convalidati i CFU a libretto. La registrazione dei CFU in carriera non è istantanea, ma ci saranno da attendere dei tempi tecnici.
4. Contamination lab
Il Contamination Lab Verona (CLab Verona) è un percorso esperienziale con moduli dedicati all'innovazione e alla cultura d'impresa che offre la possibilità di lavorare in team con studenti e studentesse di tutti i corsi di studio per risolvere sfide lanciate da aziende ed enti. Il percorso permette di ricevere 6 CFU in ambito D o F. Scopri le sfide: https://www.univr.it/clabverona
ATTENZIONE: Per essere ammessi a sostenere una qualsiasi attività didattica, incluse quelle a scelta, è necessario essere iscritti all'anno di corso in cui essa viene offerta. Si raccomanda, pertanto, ai laureandi delle sessioni di dicembre e aprile di NON svolgere attività extracurriculari del nuovo anno accademico, cui loro non risultano iscritti, essendo tali sessioni di laurea con validità riferita all'anno accademico precedente. Quindi, per attività svolte in un anno accademico cui non si è iscritti, non si potrà dar luogo a riconoscimento di CFU.
Insegnamenti e altre attività che si possono inserire autonomamente a libretto valide per l'a.a. 2024/25
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
1° 2° | Elements of Cosmology and General Relativity | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Introduction to quantum mechanics for quantum computing | D |
Claudia Daffara
(Coordinator)
|
1° 2° | Introduction to smart contract programming for ethereum | D |
Sara Migliorini
(Coordinator)
|
1° 2° | Python programming language [English edition] | D |
Carlo Combi
(Coordinator)
|
1° 2° | Mini-course on Deep Learning & Medical Imaging | D |
Vittorio Murino
(Coordinator)
|
1° 2° | BEYOND ARDUINO: FROM PROTOTYPE TO PRODUCT WITH STM MICROCONTROLLER | D |
Franco Fummi
(Coordinator)
|
1° 2° | APP REACT PLANNING | D |
Graziano Pravadelli
(Coordinator)
|
1° 2° | HW components design on FPGA | D |
Franco Fummi
(Coordinator)
|
years | Modules | TAF | Teacher |
---|---|---|---|
1° 2° | Attention Laboratory | D |
Pietro Sala
(Coordinator)
|
1° 2° | LaTeX Language | D |
Enrico Gregorio
(Coordinator)
|
1° 2° | Python programming language [Edizione in italiano] | D |
Carlo Combi
(Coordinator)
|
1° 2° | Rapid prototyping on Arduino | D |
Franco Fummi
(Coordinator)
|
1° 2° | Programming Challanges | D |
Romeo Rizzi
(Coordinator)
|
1° 2° | Protection of intangible assets (SW and invention)between industrial law and copyright | D |
Mila Dalla Preda
(Coordinator)
|
Parallel Programming (2024/2025)
Teaching code
4S008908
Credits
6
Coordinator
Not yet assigned
Language
Italian
Scientific Disciplinary Sector (SSD)
INF/01 - INFORMATICS
Courses Single
Authorized
The teaching is organized as follows:
Parte II
Credits
3
Period
Semester 2
Academic staff
Nicola Bombieri
Parte I
Credits
3
Period
Semester 2
Academic staff
Nicola Bombieri
Learning objectives
This course aims at providing theoretical and practical knowledge about programming and analysis of advanced computational architectures, with emphasis on multiprocessor and GPU platforms. At the end of the course the student will have to demonstrate the ability to apply the knowledge necessary to: identify techniques for parallel programming, also in a research context, through analysis of application efficiency and by considering both functional and non-functional design constraints (correctness, performance, energy consumption). This knowledge will allow the student to be able to analyze performance and to perform code profiling, by identifying critical zone and the corresponding optimizations by considering the architectural characteristics of the platform. At the end of the course the student will be able to compare parallel patterns and to select the best one by considering the use case; by defining the structure of the optimized code, demonstrate the ability to identify the proper architectural choices, by considering the target application and platform contexts. During the definition of the optimized code structure, the student will have the ability to continue the study autonomously in the field of the parallel programming languages and of the Software development for parallel embedded platforms.
Program
Theory:
- Parallel architectures
- Parallel programming models
- Performance measurement
- Perspective on Parallel Programming
- Designing parallel programs
- GPUs and CUDA:
overview , parallel programming model, threads
memory hierarchy/model
performance considerations
optimizations
- Graph algorithms on GPUs
data representations: Adj. matriX/lists, edge lists
Parallel algorithms for graph traversal (BFS)
Parallel algorithms for graph analysis (SSSP, APSP)
Parallel algorithms for graphs: load balancing and memory accesses: issues and management
Lab:
- OpenMP
- MPI
- CUDA
Learning assessment procedures
Exercises with open answers (total time 2 h)